Alternative feed resources in the era of climate change: A review
Abstract
Climate change poses significant challenges to traditional feed resources, impacting livestock production and food security. In response, the search for alternative feed resources has gained momentum, aiming to enhance the resilience and sustainability of agriculture in a changing climate. This review explores a diverse array of alternative feed resources that show promise in mitigating the impacts of climate change on feed availability and quality. Drawing from a comprehensive analysis of industry reports, case studies, and articles from sources such as Elsevier, Scopus, PubMed, ScholarOne, PLUS One, Science Direct, and Google Scholar, this study covers a range of innovative options, including insect-based feeds, algae, seaweeds, microbial proteins, residues, by-products, aquatic plants and weeds, hydroponic fodder production, climate-resilient forage crops, agroforestry systems, high-value crop by-products, and silvopastoral systems. Each alternative feed resource is examined in terms of its nutritional value, environmental benefits, and potential challenges to adoption. The review underscores the importance of developing and implementing climate-resilient livestock feeding strategies to ensure food security and sustainability in a changing climate. In light of climate change, this study explores the effects of switching to other feed sources in livestock production. Further research and policy support are emphasized to facilitate the integration of these alternative feed resources into livestock production systems worldwide. By embracing these innovative approaches, the agricultural sector can build resilience, reduce environmental impacts, and secure food supplies amidst climate change challenges through insect-based feeds, hydroponic fodders, agro-industrial byproducts, aquatic plants and algae, among others can be used as substitutes in the era of climate change
Full Text:
PDFReferences
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., and Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539-42559. https://doi.org/10.1007/s11356-022-19718-6
Amobi, M.I., Saleh, A., Okpoko, V.O., and Abdullahi, A.M. (2020). Growth performance of broiler chickens based on grasshopper meal inclusions in feed formulation. Fortschr Zool., 18:39–43. https://doi.org/10.4314/tzool.v18i1.7
Archer, J. A., Richardson, E. C., Herd, R. M., and Arthur, P. F. (1999). Potential for selection to improve efficiency of feed use in beef cattle: a review. Australian Journal of Agricultural Research, 50(2), https://doi.org/147-162. 10.1071/A98075
Assan, N. (2014). Possible impact and adaptation to climate change in livestock production in Southern Africa. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(2), 104-112. https://doi.org/10.9790/2402-0824104112
Aydinalp, C., and Cresser, M. S. (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural and Environmental Sciences, 3(5), 672-676. https://www.researchgate.net/publication/238091112
Ayo, J. O., Obidi, J., and Rekwot, P. (2011). Effects of Heat Stress on the Well-Being, Fertility, and Hatchability of Chickens in the Northern Guinea Savannah Zone of Nigeria: A Review. ISRN Veterinary Science. https://doi.org/10.5402/2011/838606
Ball, D.M., Collins, M., Lacefield, G., Martin, N., Mertens, D., Olson, K., Putnam, D., Undersander, D., and Wolf, M. Understanding Forage Quality. American Farm Bureau Federation Publication. 2001. Available online: http://pss.uvm.edu/pdpforage/Materials/ForageQuality/Understanding_Forage_Quality_Ball.pdf (accessed on 3 November 2021).
Belhadj, S. I., Yerou, H., Ben Larbi, M., M’Hamdi, N. and Najar, T. (2023) Insects as an alternative protein source for poultry nutrition: a review. Front. Vet. Sci. 10:1200031. doi: 10.3389/fvets.2023.1200031
Benchaar, C., Pomar, C., and Chiquette, J. (2001). Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Canadian Journal of Animal Science, 81(4), 563-574. https://doi.org/10.4141/a00-119
Berihulay, H., Abied, A., He, X., Jiang, L., and Ma, Y. (2019). Adaptation mechanisms of small ruminants to environmental heat stress. Animals, 9(3), 75. https://doi.org/10.3390/ani9030075
Biswas, S., and Goswami, A. (2019). Innovative round the year green fodder production for sustainable livestock farming practice. Innovations in Agriculture, Environment and Health Research for Ecological Restoration, Proceedings of National Symposium IAETID.
Cervantes, M., Antoine, D., Valle, J. A., Vásquez, N., Camacho, R. L., Bernal, H., and Morales, A. (2018). Effect of feed intake level on the body temperature of pigs exposed to heat stress conditions. Journal of Thermal Biology, 76, 1-7. https://doi.org/10.1016/j.jtherbio.2018.06.010
Change, I. P. C. C. (2007). Climate change 2007: The physical science basis. Agenda, 6(07), 333. https://www.researchgate.net/publication/224017972
Chapman, S. C., Chakraborty, S., Dreccer, M. F., and Howden, S. M. (2012). Plant adaptation to climate change—opportunities and priorities in breeding. Crop and Pasture Science, 63(3), 251-268. https://doi.org/10.1071/cp11303
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024-1026. https://doi.org/10.1126/science.1206432
Cho, S.J.; McCarl, B.A. Climate change influences on crop mix shifts in the United States. Sci. Rep. 2017, 7, 40845.
Chu, X., Li, M., Wang, G., Wang, K., Shang, R., and Wang, Z, (2020). Evaluation of the lowinclusion of full-fatted hermetia illucens larvae meal for layer chickens: growth performance, nutrient digestibility, and gut health. Front Vet Sci. (2020) 7:585843. doi: 10.3389/fvets.2020.585843
Collins, M., Nelson, C.J., Moore, K.J., and Barnes, R.F. Forages, Volume 1: An Introduction to Grassland Agriculture; John Wiley and Sons: Hoboken, NJ, USA, 2017; 432p.
da Fonseca de Oliveira, A. C., Vanelli, K., Sotomaior, C. S., Weber, S. H., and Costa, L. B. (2019). Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis. Veterinary Research Communications, 43, 37-43. https://doi.org/10.1007/s11259-018-9741-1
Derner, J., Briske, D., Reeves, M., Brown-Brandl, T., Meehan, M., Blumenthal, D. and Peck, D. (2017). Vulnerability of grazing and confined livestock in the Northern Great Plains to project mid-and late-twenty-first century climate. Climatic Change, 146, 19-32. https://doi.org/10.1007/s10584-017-2029-6
Devendra, C., and Leng, R. A. (2011). Feed resources for animals in Asia: issues, strategies for use, intensification and integration for increased productivity. Asian-Australasian Journal of Animal Sciences, 24(3), 303-321. https://doi.org/10.5713/ajas.2011.r.05
Dumont, B., Andueza, D., Niderkorn, V., Lüscher, A., Porqueddu, C., and Picon-Cochard, C. (2015) A meta-analysis of climate change effects on forage quality in grasslands: Specificities of mountain and Mediterranean areas. Grass Forage Sci. 2015, 70, 239–254.
Edame, G.E., A.B. Ekpenyong, W.M. Fonta, and Duru, E.J.C. (2011), ‘Climate Change, Food Security and Agricultural Productivity in Africa: Issues and Policy Directions’, International Journal of Humanities and Social Science, Vol. 1 (21):205-223. https://www.researchgate.net/publication/52000211
Elahi, U., Ma, Y., Wu, S., Wang, J., Zhang, H., and Qi, G. Growth performance, carcass characteristics, meat quality and serum profile of broiler chicks fed on housefly maggot meal as a replacement of soybean meal. J. Anim. Physiol. Anim. Nutr. (2020) 104:1075–84. https://doi: 10.1111/jpn.13265
Escarcha, J. F., Lassa, J. A., and Zander, K. K. (2018). Livestock under climate change: a systematic review of impacts and adaptation. Climate, 6(3), 54. https://doi.org/10.3390/cli6030054
Fabian, C., and Ju, Y. H. (2011). A review on rice bran protein: its properties and extraction methods. Critical reviews in food science and nutrition, 51(9), 816-827. https://doi.org/10.1080/10408398.2010.482678
FAO. (2018). Climate-smart agriculture sourcebook. Food and Agriculture Organization of the United Nations. https://www.fao.org/climate-smart-agriculture-sourcebook/en/
Feliciano, D., Recha, J., Ambaw, G., MacSween, K., Solomon, D., and Wollenberg, E. (2022). Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Climate policy, 22(4), 427-444. https://doi.org/10.1080/14693062.2022.2028597
Food and Agriculture Organization (FAO). (2019). The potential of insects as animal feed. FAO. https://www.fao.org/edible-insects/en/
Food and Agriculture Organization (FAO). (2020). Climate change, water scarcity, and adaptation in the agricultural sector. FAO Policy Support and Governance Division. http://www.fao.org/3/ca9611en/CA9611EN.pdf
Gebresamuel, G., Molla, B., Teka, K., Negash, E., Haile, M., and Okolo, C. C. (2020). Changes in soil organic carbon stock and nutrient status after conversion of pasture land to cultivated land in semi-arid areas of northern Ethiopia. Archives of Agronomy and Soil Science, 68(1), 44-60. https://doi.org/10.1080/03650340.2020.1823372
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., ... and Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).pp. 1-115. https://www.researchgate.net/publication/289509969
Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R., and Warner, R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science, 162, 108025. https://doi.org/10.1016/j.meatsci.2019.108025
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., and Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973-2989. https://doi.org/10.1098/rstb.2010.0158
Gorniak, T., Meyer, U., Südekum, K. H., and Dänicke, S. (2014). Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Archives of Animal Nutrition, 68(5), 358-369. https://doi.org/10.1080/1745039x.2014.950451
Haase, D. (2021). Integrating ecosystem services, green infrastructure and nature-based solutions—new perspectives in sustainable urban land management: combining knowledge about urban nature for action. Sustainable Land Management in a European Context: A Co-Design Approach, 305-318. https://doi.org/10.1007/978-3-030-50841-8_16
Hadi, A., Naz, N., Ur Rehman, F., Kalsoom, M., Tahir, R., Adnan, M., Saeed, M.S., Khan, A.U., and Mehta, J. (2020) Impact of Climate Change Drivers on C4 Plants: A Review. Curr. Res. Agric. Farming 2020,
Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson, A.M.and Wolfe, D. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 103, 351–370.
He, S. P., Arowolo, M. A., Medrano, R. F., Li, S., Yu, Q. F., Chen, J. Y., and He, J. H. (2018). Impact of heat stress and nutritional interventions on poultry production. World's Poultry Science Journal, 74(4), 647-664. https://doi.org/10.1017/s0043933918000727
Herbut, P., Angrecka, S., Godyń, D., and Hoffmann, G. (2019). The physiological and productivity effects of heat stress in cattle–a review. Annals of Animal Science, 19(3), 579-593. https://doi.org/10.2478/aoas-2019-0011
Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., ... and Stehfest, E. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(5), 452-461. https://doi.org/10.1038/nclimate2925
Heuzé, V., Tran, G., Sauvant, D., Bastianelli, D., and Lebas, F. (2020). Earthworm meal. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO Available at: https://feedipedia.org/node/665 (Accessed November 3, 2020).
Hidosa, D., and Guyo, M. (2017). Climate change effects on livestock feed resources: A review. J. Fish. Livest. Prod, 5, 259. https://doi.org/10.4172/2332-2608.1000259
Hoffmann, A. A., and Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 479-485. https://doi.org/10.1038/nature09670
Hopkins, A. (2000). A review of grassland production and fertilizer response data with reference to the basis for management agreements. Technical Report, Project BD1438, Institute of Grassland and Environment Research, UK, p 45 plus appendices.
Hopkins, A., Prado, A.D. (2007). Implications of climate change for grassland in Europe: Impacts, adaptations and mitigation options: A review. Grass Forage Sci., 62, 118–126.
Howden, S. M., Crimp, S. J., and Stokes, C. J. (2008). Climate change and Australian livestock systems: impacts, research and policy issues. Australian Journal of Experimental Agriculture, 48(7), 780-788. https://doi.org/10.1071/ea08033
Hummel, M., Hallahan, B.F., Brychkova, G., Ramirez-Villegas, J., Guwela, V., Chataika, B., Curley, E., McKeown, P.C., Morrison, L., Talsma, E.F. (2018). Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci. Rep., 8, 16187.
IFAD (International Fund for Agricultural Development), 2010. Livestock and climate change. https://sdg.iisd.org/news/ifad-releases-paper-on-livestock-and-climate-change/
IPCC (Intergovermental Panel on Climate Change), 2013. Climate change 2013: The physical science basis. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535. https://www.ipcc.ch/report/ar5/wg1/
Janković, L.J., Petrujkić, B., Aleksić, N., Vučinić, M., Teodorović, R., and Karabasil, N. (2020) Carcass characteristics and meat quality of broilers fed on earthworm (Lumbricus rubellus) meal. J. Hellenic Vet Med Soc., 71:2031–40. doi: 10.12681/ jhvms.22953
Jayathilakan, K., Sultana, K., Radhakrishna, K., and Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology, 49, 278-293.
Jintasataporn, O. (2012). Production performance of broiler chickens fed with silkworm pupa (Bombyx mori). J Agric Sci Technol Iran., 2:505–10.
Kadzere, C. T., Murphy, M. R., Silanikove, N., and Maltz, E. (2002). Heat stress in lactating dairy cows: a review. Livestock Production Science, 77(1), 59-91. https://doi.org/10.1016/s0301-6226(01)00330-x
Karimi, S., Mahboobi Soofiani, N., Mahboubi, A., and Taherzadeh, M. J. (2018). Use of organic wastes and industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability, 10(9), 3296. https://doi.org/10.3390/su10093296
Kassie, B. T., Rötter, R. P., Hengsdijk, H., Asseng, S., Van Ittersum, M. K., Kahiluoto, H., and Van Keulen, H. (2013). Climate variability and change in the Central Rift Valley of Ethiopia: challenges for rainfed crop production. The Journal of Agricultural Science, 152(1), 58-74. https://doi.org/10.1017/s0021859612000986
Konapala, G., Mishra, A.K., Wada, Y., and Mann, M.E. (2020) Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun., 11, 3044.
Koura, B. I., Vastolo, A., Kiatti, D. D., Cutrignelli, M. I., Houinato, M., and Calabrò, S. (2022). Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa). Animals, 12(24), 3550. https://doi.org/10.3390/ani12243550
Klaus, W., L., Yukiko N. (2021), Edible insects as future food: chances and challenges, Journal of Future Foods, 1, (1): 38-46, https://doi.org/10.1016/j.jfutfo.2021.10.001.
Kukal, M.S., and Irmak, S. (2018). Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the, U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450.
Liceaga, A.M. (2021). Processing insects for use in the food and feed industry. Current Opinion in Insect Science, 48: 32-36, https://doi.org/10.1016/j.cois.2021.08.002.
Liceaga, A.M. (2022).Chapter Four - Edible insects, a valuable protein source from ancient to modern times, Editor(s): Jianping Wu,Advances in Food and Nutrition Research, Academic Press, 101: 129-152, https://doi.org/10.1016/bs.afnr.2022.04.002.
Lee, M.A., Davis, A.P., Chagunda, M.G.G., and Manning, P. (2017). Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences, 14, 1403–1417.
Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... and Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature climate change, 4(12), 1068-1072. https://doi.org/10.1038/nclimate2437
Liu, X., Liu, X., Yao, Y., Qu, X., Chen, J., Xie, K. (2021) Effects of different levels of Hermetia illucens larvae meal on performance, egg quality, yolk fatty acid composition and oxidative status of laying hens. Ital J Anim Sci. (2021) 20:256–66. https://doi.org/doi:10.1080/1828051X.2021.1878946
Lobell, D. B., Bänziger, M., Magorokosho, C., and Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42-45. https://doi.org/10.1038/nclimate1043
Lopez, J., Jesse, G. W., Becker, B. A., and Ellersieck, M. R. (1991). Effects of temperature on the performance of finishing swine: I. Effects of a hot, diurnal temperature on average daily gain, feed intake, and feed efficiency. Journal of Animal Science, 69(5), 1843-1849. https://doi.org/10.2527/1991.6951843x
Lu, C. D. (1989). Effects of heat stress on goat production. Small Ruminant Research, 2(2), 151-162. https://doi.org/10.1016/0921-4488(89)90040-0
Makkar, H. P., and Ankers, P. (2014). Towards sustainable animal diets: a survey-based study. Animal Feed Science and Technology, 198, 309-322. https://doi.org/10.1016/j.anifeedsci.2014.09.018
Manzoor, A., Pandey, V.K. Dar, A.H., Fayaz, U., Dash,K.K., Shams, R., Ahmad, S., Bashir, I., Fayaz, J., Singh, P., Khan, S.A.,Ganaie, T.A. (2023). Rice bran: Nutritional, phytochemical, and pharmacological profile and its contribution to human health promotion. Food Chemistry Advances, 2, #100296. https://doi.org/10.1016/j.focha.2023.100296.
Mason, S. C., Ouattara, K., Taonda, S. J. B., Palé, S., Sohoro, A., and Kaboré, D. (2014). Soil and cropping system research in semi-arid West Africa as related to the potential for conservation agriculture. International Journal of Agricultural Sustainability, 13(2), 120-134. https://doi.org/10.1080/14735903.2014.945319
McMichael, A. J., Powles, J. W., Butler, C. D., and Uauy, R. (2007). Food, livestock production, energy, climate change, and health. The lancet, 370(9594), 1253-1263. https://doi.org/10.1016/s0140-6736(07)61256-2
Menigistu, A. (2004). Rangeland Biodiversity: Concepts, Approaches and the way forward. Addis Ababa University, Faculty of Science, Addis Ababa, Ethiopia, 80. http://publication.eiar.gov.et:8080/xmlui/bitstream/handle/123456789/3433/RANGELANDS%20BIODIVERSITY%20CONCEPTS%2C%20APPROACHES%20AND%20THE%20WAY%20FORWARD.pdf?sequence=1
Mignon-Grasteau, S., Moreri, U., Narcy, A., Rousseau, X., Rodenburg, T. B., Tixier-Boichard, M., and Zerjal, T. (2015). Robustness to chronic heat stress in laying hens: a meta-analysis. Poultry Science, 94(4), 586-600. https://doi.org/10.3382/ps/pev028
Milićević, D., Petronijević, R., Petrović, Z., Đjinović‐Stojanović, J., Jovanović, J., Baltić, T., and Janković, S. (2019). Impact of climate change on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia. Journal of the Science of Food and Agriculture, 99(11), 5202-5210. https://doi.org/10.1002/jsfa.9768
Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the national academy of sciences, 104(50), 19680-19685. https://doi.org/10.1073/pnas.0701855104
Müller-Mahn, D., Rettberg, S., and Getachew, G. (2010). Pathways and dead ends of pastoral development among the Afar and Karrayu in Ethiopia. The European Journal of Development Research, 22, 660-677. https://doi.org/10.1057/ejdr.2010.37
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., and Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. https://doi.org/10.1016/j.livsci.2010.02.011
National Research Council (NRC). (2000). Nutrient requirements of beef cattle (7th ed.). National Academies Press. https://nap.nationalacademies.org/catalog/9791/nutrient-requirements-of-beef-cattle-seventh-revised-edition-update-2000
Nawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., ... and An, L. (2018). Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 78, 131-139. https://doi.org/10.1016/j.jtherbio.2018.08.010
Newton, L., Sheppard, D. C., Watson, D. W., and Thelen, E. E. (2005). The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. ResearchGate. https://www.researchgate.net/publication/237345975
Oguntunji, A. O., and Alabi, O. M. (2010). Influence of high environmental temperature on egg production and shell quality: a review. World's Poultry Science Journal, 66(4), 739-750. https://doi.org/10.1017/s004393391000070x
Ojediran, T. K., Abioye, I. A., Ajayi, A. F., and Emiola, I. A. (2019). Replacement value of cassava vinasse meal for maize on growth performance, haematological parameters and organoleptic properties of Japanese quails (Coturnix japonica). Acta Fytotechnica et Zootechnica, 22(1), 7-12. https://doi.org/10.15414/afz.2019.22.01.7-12
Ojediran, T. K., Bamigboye, D. O., Olonade, G. O., Ajayi, A. F., and Emiola, I. A. (2019). Growth response, cost benefit, carcass characteristics and organoleptic properties of pigs fed biscuit dough as a replacement for maize. Acta fytotechn et zootechn, 22(2), 58-63. https://doi.org/10.15414/afz.2019.22.02.58-63
Ojediran, T. K., Olayiwola, S., Adeyeye, M., Ajayi, A. F., and Emiola, I. A. (2020). Effects of palm kernel meal-based diet with or without enzyme supplementation on growth performance, economic benefits and villi morphometry of weaned pigs. Pol. J. Natur. Sc, 35(2), 129-139.
Ojediran, T. K., Oloruntade, T., Durojaye, B., Saka, R., and Emiola, I. (2017). Blood parameters, carcass yield, organ weight and villi morphometrics of broilers fed low protein diet in excess of dietary lysine. Trakia Journal of Sciences, 2, 121-127. https://doi.org/10.15547/tjs.2017.02.004
Ojediran, T., Aroyehun, B., and Emiola, I. (2022). Evaluation of cassava distillers’ waste meal in the diet of broiler chickens. Animal Science and Genetics, 18(2), 41-55. https://doi.org/10.5604/01.3001.0015.8961
Ojediran, T., Olagoke, O., and Emiola, I. (2022). Effect of replacing full-fat soybean meal with undefatted cashew reject kernel meal on the growth response, blood parameters, organ weight and abdominal fat weight of broiler chicks. Animal Science and Genetics, 18(4), 33-45 https://doi.org/10.5604/01.3001.0016.1380
Ojediran, T., Oyebamiji, O., Areo, E., and Emiola, I. (2021). Growth parameters, economic analysis and blood characteristics of weaned pigs fed cashew reject kernel meal. Polish Journal of Natural Sciences, 36(2), 131-145.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
Pearcy, R.W., and Ehleringer, J. (1984). Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ., 7, 1–13.
Pearce, S. C., Gabler, N. K., Ross, J. W., Escobar, J., Patience, J. F., Rhoads, R. P., and Baumgard, L. H. (2013). The effects of heat stress and plane of nutrition on metabolism in growing pigs. Journal of Animal Science, 91(5), 2108-2118. https://doi.org/10.2527/jas.2012-5738
Polley, H. W., Briske, D. D., Morgan, J. A., Wolter, K., Bailey, D. W., and Brown, J. R. (2013). Climate change and North American rangelands: trends, projections, and implications. Rangeland Ecology and Management, 66(5), 493-511. https://doi.org/10.2111/rem-d-12-00068.1
Prueckler, M., Siebenhandl-Ehn, S., Apprich, S., Hoeltinger, S., Haas, C., Schmid, E., and Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT-Food Science and Technology, 56(2), 211-221. https://doi.org/10.1016/j.lwt.2013.12.004
Rachel, J. E., Gnanaraj, P. T., Kumar, T. S., Gopinathan, A., Sundaram, S. M. (2020). Productivity and nutritional composition of maizefodder grown by hydroponic and conventinal methods. Journal of Pharmacognosy and Phytochemistry, 9(3): 321-325.
Rachwał, K., Waśko, A., Gustaw, K., and Polak-Berecka, M. (2020, July 14). Utilization of brewery wastes in food industry. PeerJ, 8, e9427. https://doi.org/10.7717/peerj.9427
Ray, R.L., Fares, A., and Risch, E. (2018). Effects of Drought on Crop Production and Cropping Areas in Texas. Agric. Environ. Lett., 3, 170037.
Reynolds, C., Crompton, L., and Mills, J. (2010). Livestock and climate change impacts in the developing world. Outlook on Agriculture, 39(4), 245-248. https://doi.org/10.5367/oa.2010.0015
Rhoads, M. L., Rhoads, R. P., VanBaale, M. J., Collier, R. J., Sanders, S. R., Weber, W. J., ... and Baumgard, L. H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. Journal of Dairy Science, 92(5), 1986-1997. https://doi.org/10.3168/jds.2008-1641
Roberts, B. R., Anderson, E. R., and Fourie, J. H. (1975). Evaluation of natural pastures: quantitative criteria for assessing condition in the Themeda veld of the Orange Free State. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa, 10(1), 133-140. https://doi.org/10.1080/00725560.1975.9648761
Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., and Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate risk management, 16, 145-163. https://doi.org/10.1016/j.crm.2017.02.001
Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M. R., Adur, M. K., Keating, A. F., and Baumgard, L. H. (2017). Physiological mechanisms through which heat stress compromises reproduction in pigs. Molecular Reproduction and Development, 84(9), 934-945. https://doi.org/10.1002/mrd.22859
Rust, J.M. (2019). The impact of climate change on extensive and intensive livestock production systems. Anim. Front., 9, 20–25.
Saeed, M.; Abbas, G., Alagawany, M., Kamboh, A.A., Abd El-Hack, M.E,; Khafaga, A.F., and Chao, S. (2019.) Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425.
Sahoo, A. (2018). Silage for climate resilient small ruminant production. Ruminants: The Husbandry, Economic and Health Aspects, 11. https://doi.org/10.5772/intechopen.74667
Sanz-Sáez, Á., Erice, G., Aguirreolea, J., Muñoz, F., Sánchez-Díaz, M., and Irigoyen, J. J. (2012). Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain. Journal of Plant Physiology, 169(8), 782-788. https://doi.org/10.1016/j.jplph.2012.01.010
Schuurmans, C. J. E. (2021). The world heat budget: expected changes. In Climate Chan geImpact on Coastal Habitation (pp. 1-15). CRC Press. https://doi.org/10.1201/9781003069935-1
Seerapu, S. R., Kancharana, A. R., Chappidi, V. S., and Bandi, E. R. (2015). Effect of microclimate alteration on milk production and composition in Murrah buffaloes. Veterinary world, 8(12), 1444. https://doi.org/10.14202/vetworld.2015.1444-1452
Shakeri, M., Cottrell, J. J., Wilkinson, S., Ringuet, M., Furness, J. B., and Dunshea, F. R. (2018). Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals, 8(10), 162. https://doi.org/10.3390/ani8100162
Shittu, M. D., Ojebiyi, O. O., Ademola, S. G., and Ojediran, T. K. (2016). Replacement value of biscuit dough for maize on performance and nutrient utilization of broiler chickens. International Journal of Science, Environment and Technology, 5(3), 1057-1065. https://www.researchgate.net/publication/312591337
Siddiqui, S. A., Alvi, T., Sameen, A., Khan, S., Blinov, A. V., Nagdalian, A. A., ... and Onwezen, M. (2022). Consumer acceptance of alternative proteins: a systematic review of current alternative protein sources and interventions adapted to increase their acceptability. Sustainability, 14(22), 15370. https://doi.org/10.3390/su142215370
Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. https://doi.org/10.1016/s0301-6226(00)00162-7
Sinclair, F., Wezel, A., Mbow, C., Chomba, S., Robiglio, V., and Harrison, R. (2019). The contribution of agroecological approaches to realizing climate-resilient agriculture. GCA: Rotterdam, The Netherlands. https://www.researchgate.net/publication/341406604
Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., and De Smet, S. (2016). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture, 97(8), 2594-2600. https://doi.org/10.1002/jsfa.8081
Storz, J. F. (2016). Hemoglobin–oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? Journal of Experimental Biology, 219(20), 3190-3203. https://doi.org/10.1242/jeb.127134
Suleiman, M., Khadija, A.Y. , Nasiru, Y.,, Garba, A.A., Alhassan, M. and Bello, H.J. (2020). Proximate, Minerals and Anti-Nutritional Composition of Water Hyacinth (Eichhornia crassipes) Grass. Earthline Journal of Chemical Sciences, 3 (1) :51-59. https://doi.org/10.34198/ejcs.3120.5159
Summer, A., Lora, I., Formaggioni, P., and Gottardo, F. (2018). Impact of heat stress on milk and meat production. Animal Frontiers, 9(1), 39-46. https://doi.org/10.1093/af/vfy026
Syafwan, S., Kwakkel, R. P., and Verstegen, M. W. A. (2011). Heat stress and feeding strategies in meat-type chickens. World's Poultry Science Journal, 67(4), 653-674. https://doi.org/10.1017/s0043933911000742
Tavakoli, S., Regenstein,J.M., Daneshvar, E., Bhatnagar,A., Luo, Y., Hong, A. (2021). Recent advances in the application of microalgae and its derivatives for preservation, quality improvement, and shelf-life extension of seafood. Crit. Rev. Food Sci. Nutr. (2021), pp. 1-14
Teague, W. R., Dowhower, S. L., Baker, S. A., Haile, N., DeLaune, P. B., and Conover, D. M. (2011). Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agriculture, Ecosystems and Environment, 141(3-4), 310-322. https://doi.org/10.1016/j.agee.2011.03.009
Tester, M., and Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822. https://doi.org/10.1126/science.1183700
Thornton PK, Boone RB, J Ramirez-Villegas (2015). Climate change impacts on livestock. CCAFS Working Paper no. 120. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org
Thornton, P. K., and Gerber, P. J. (2010). Climate change and the growth of the livestock sector in developing countries. Mitigation and adaptation strategies for global change, 15, 169-184. https://doi.org/10.1007/s11027-009-9210-9
Thornton, P. K., Ericksen, P. J., Herrero, M., and Challinor, A. J. (2014). Climate variability and vulnerability to climate change: a review. Global Change Biology, 20(11), 3313-3328. https://doi.org/10.1111/gcb.12581
Thornton, P. K., van de Steeg, J., Notenbaert, A., and Herrero, M. (2009). The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agricultural Systems, 101(3), 113-127. https://doi.org/10.1016/j.agsy.2009.05.002
Van der Spiegel, M., Noordam, M. Y., and Van der Fels‐Klerx, H. J. (2013). Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Comprehensive Reviews in Food Science and Food Safety, 12(6), 662-678. https://doi.org/10.1111/1541-4337.12032
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., and Vantomme, P. (2013). Edible insects: future prospects for food and feed security (No. 171). Food and agriculture organization of the United Nations. https://www.fao.org/3/i3253e/i3253e.pdf
Wan, A. H., Davies, S. J., Soler‐Vila, A., Fitzgerald, R., and Johnson, M. P. (2018). Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture, 11(3), 458-492. https://doi.org/10.1111/raq.12241
Wand, S. J., Midgley, G. F., Jones, M. H., and Curtis, P. S. (1999). Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta‐analytic test of current theories and perceptions. Global Change Biology, 5(6), 723-741. https://doi.org/10.1046/j.1365-2486.1999.00265.x
Webber, H., Ewert, F., Olesen, J.E., Müller, C., Fronzek, S., Ruane, A.C., Bourgault, M., Martre, P., Ababaei, B., and Bindi, M. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun., 9, 4249.
Wilkes A (2008). Towards Mainstreaming Climate Change in Grassland Management Policies and Practices on the Tibetan Plateau. Southeast Asia Working Paper 67, World Agro-forestr. https://apps.worldagroforestry.org/downloads/Publications/PDFS/WP08200.pdf
Yadav, B., Singh, G., Verma, A. K., Dutta, N., and Sejian, V. (2013). Impact of heat stress on rumen functions. Veterinary World, 6(12), 992. https://doi.org/10.14202/vetworld.2013.992-996
Yitayew, T., Moges, D., and Satheesh, N. (2022). Effect of Brewery Spent Grain Level and Fermentation Time on the Quality of Bread. International Journal of Food Science, 2022.
Zaboli, G., Huang, X., Feng, X., and Ahn, D. U. (2019). How can heat stress affect chicken meat quality? – a review. Poultry science, 98(3), 1551-1556. https://doi.org/10.3382/ps/pey399
Zahari, M. W., and Wong, H. K. (2009). Research and development on animal feed in Malaysia. WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences, 19(4), 172-179. http://medpub.litbang.pertanian.go.id/index.php/wartazoa
DOI: https://doi.org/10.13170/ajas.9.3.37655
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
DETAIL VISITORS STATISTIC COUNTER CLICK HERE
This work is licensed under a Creative Commons Attribution - 4.0 International Public License (CC - BY 4.0).