Imam Agus Faisal, Hadi Rahadian


This study aims to analyze the impact of internet usage on the income of informal workers in Indonesia's urban and rural area. The data used in this study is secondary data, sourced from August 2021 SAKERNAS data. This study uses Propensity Score Matching (PSM) to analyze the main objective. The result of this study shows that informal workers in urban area has more benefits than informal workers in rural area. Meanwhile the internet usage in urban and rural area are not optimal. This study implies that internet usage has worsen the income gap between urban and rural area. Therefore, the government should widen the internet access in all over area, particularly the rural area. Thus, it should provide training or education for informal workers in rural area about awareness of the importance of internet.


Internet, pendapatan, sektor informal, propensity score matching

Full Text:



Alarima, C. I. (2019). Factors influencing rural-urban migration of youths in Osun State, Nigeria. Agro-Science, 17(3), 34.

Anandhita, V. H., & Ariansyah, K. (2018). Gender Inequality on the Internet Access and Use in Indonesia: Evidence and Implications. 2018 International Conference on ICT for Rural Development (IC-ICTRuDev), 142–147.

Atasoy, H. (2013). TheThe Effects of Broadband Internet Expansion on Labor Market Outcomes. ILR Review, 66(2), 315–345.

Austin, P. C. (2014). A comparison of 12 algorithms for matching on the propensity score. Statistics in Medicine, 33(6), 1057–1069.

Deen-Swarray, M., Moyo, M., & Stork, C. (2013). ICT access and usage among informal businesses in Africa. Info, 15(5), 52–68.

Indonesia, Badan Pusat Statistik. (2021). Statistik Telekomunikasi Indonesia.

Indonesia, Badan Pusat Statistik. (2022). Persentase Penduduk Miskin (P0) Menurut Daerah 2021-2022. Diakses pada tanggal 15 Agustus 2022, dari

Indonesia, Badan Pusat Statistik. (2022). PDB Seri 2010 (Milyar Rupiah). Diakses pada tanggal 15 Agustus 2022, dari

Indonesia, Badan Pusat Statistik (2023). Sistem Informasi Layanan Statistik.

Ivus, O., & Boland, M. (2015). The employment and wage impact of broadband deployment in Canada. Canadian Journal of Economics/Revue Canadienne d’économique, 48(5), 1803–1830.

Kadir, K., & Prasetyo, O. R. (2021). Determinan Demografi Penggunaan Internet Petani Padi di Indonesia dan Kaitannya Dengan Produktivitas. Seminar Nasional Official Statistics, 2021(1), 166–175.

Laksono, A. D., & Wulandari, R. D. (2021). Faktor-Faktor yang Berhubungan dengan Ukuran Keluarga di Indonesia. Aspirasi: Jurnal Masalah-Masalah Sosial, 12(1), 1–13.

Mora-Rivera, J., & García-Mora, F. (2021). Internet access and poverty reduction: Evidence from rural and urban Mexico. Telecommunications Policy, 45(2), 102076.

Nguimkeu, P., & Okou, C. (2021). Leveraging digital technologies to boost productivity in the informal sector in Sub-Saharan Africa. Review of Policy Research, 38(6), 707–731.

Panichsombat, R. (2016). Impact of Internet Penetration on Income Inequality in Developing Asia: an Econometric Analysis. The Journal of social sciences and humanities, 3.

Priyatna, M. F. (2022). Does Internet Usage Lead to An Increase in Household Incomes? Indonesian Rural Case Study. 11(1), 12.

Rahayu, B. I., & Riyanto, R. (2020). The Role of Mobile Phone and Internet Use in the Performance of Rural Non-Farm Enterprises: An Analysis of Indonesian Rural Households. Buletin Pos Dan Telekomunikasi, 18(1), 29.

Rangaswamy, N. (2019). A note on informal economy and ICT. The Electronic Journal of Information Systems in Developing Countries, 85(3), e12083.

Ratnasari, C. D. (2021). Internet Utilization and Income of Entrepreneurs in the Informal Sector. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 22(2), 129–138.

Rothenberg, A. D., Gaduh, A., Burger, N. E., Chazali, C., Tjandraningsih, I., Radikun, R., Sutera, C., & Weilant, S. (2016). Rethinking Indonesia’s Informal Sector. World Development, 80, 96–113.

Siaw, A., Jiang, Y., Twumasi, M. A., & Agbenyo, W. (2020). The Impact of Internet Use on Income: The Case of Rural Ghana. Sustainability, 12(8), 3255.

Stuart, E. A., Lee, B. K., & Leacy, F. P. (2013). Prognostic score–based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research. Journal of Clinical Epidemiology, 66(8), S84-S90.e1.

Suwadji, Y. T. (2021). How Is The Internet Usage Pattern Among Women Self-Employed? An Analysis Of The National Labor Force Survey (Sakernas). Jurnal Ketenagakerjaan, 15(2).

Tan, Y., & Li, X. (2022). The impact of internet on entrepreneurship. International Review of Economics & Finance, 77, 135–142.

WeAreSocial. (2022). Digital: 2022 Indonesia. Diakses pada tanggal 15 Agustus 2022, dari

Whitacre, B., Gallardo, R., & Strover, S. (2014a). Does rural broadband impact jobs and income? Evidence from spatial and first-differenced regressions. The Annals of Regional Science, 53(3), 649–670.

Whitacre, B., Gallardo, R., & Strover, S. (2014b). Broadband׳s contribution to economic growth in rural areas: Moving towards a causal relationship. Telecommunications Policy, 38(11), 1011–1023.


Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Copyright (c) 2023 Jurnal Ekonomi dan Kebijakan Publik Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License