Page Header

  • Home
  • About
  • Login
  • Register
  • Categories
  • Search
  • Current
  • Archives
  • Announcements
  • SUBMISSION
  • TDMRC
Home > Vol 7, No 1 (2024) > Masruroh

 

About The Authors

Heni Masruroh orcid
https://scholar.google.com/citations?user=GeKPaWwAAAAJ&hl=en&oi=ao

Geography Department, Universitas Negeri Malang
Indonesia

Geography Department, Universitas Negeri Malang

Syamsul Bachri
Geography Department, Universitas Negeri Malang
Indonesia

Purwanto Purwanto
Geography Department, Universitas Negeri Malang
Indonesia

Tuti Mutia
Geography Department, Universitas Negeri Malang
Indonesia

Publisher:

TDMRC Universitas Syiah Kuala

E-ISSN: 2527-4341

 P-ISSN: 2808-439X

A Perspective of Geomorphology for Landslide Susceptibility and its Applied in the Taji Village-Malang Regency as Vulcanic Area

Heni Masruroh, Syamsul Bachri, Purwanto Purwanto, Tuti Mutia

Abstract

Landslides are Indonesia's second-largest disaster during 2020-2022. Many researchers have conducted research related to landslides, i.e., landslide susceptibility with statistical, heuristic, geomorphological approaches and landslide disaster risk. The geomorphological approach is one approach in the study of landslides that can represent morphology, morphostructure, morphochronology, and morphoarrangements. This research aims to explain landslide hazard mapping using a geomorphological approach, evidenced by a case study in the Gede watershed as one of the watersheds in Taji Village. The method used in this research is Geomorphology approach using a systematic literature review. Furthermore, landslide susceptibility analysis has been carried out using a geomorphological approach with topographic position analysis a case study in Taji Village. The results showed that landslides can be more specifically identified through morphology, surface material resulting from morphochronological and morphological processes, and existing and dormant geomorphological processes. These four aspects can be used as the key to the identification of landslide hazards. Based on the geomorphological approach, as much as 52.13% is very high vulnerability located on the upper slope morphology, 25.45% high vulnerability on the middle slope, 10.16% medium vulnerability on the lower slope, and 12.26% low vulnerability on the slope morphology foot.

 Keywords

geomorphology; landslide susceptibility; taji Village; perspective

 Full Text:

PDF

References

Anderson R. S. (2008). The little book of Geomorphology - Exercising the priciple of Conservation. 1–133.

Antronico, L., De Pascale, F., Coscarelli, R., & Gullà, G. (2020). Landslide risk perception, social vulnerability and community resilience: The case study of Maierato (Calabria, southern Italy). International Journal of Disaster Risk Reduction, 46(February). https://doi.org/10.1016/j.ijdrr.2020.101529

DIBI. (2023). Statistik Kebencanaan. Accessed on 28 Desember 2023, https://dibi.bnpb.go.id/

Baroň, I., Jelének, J., Klimeš, J., Dong, J. J., Melichar, R., Šutjak, M., … Kycl, P. (2024). Source area morphometry and high depletion rate of landslides may indicate their coseismic origin. Engineering Geology, 330(January). https://doi.org/10.1016/j.enggeo.2024.10742

Berhane, G., & Tadesse, K. (2021b). Landslide susceptibility zonation mapping using statistical index and landslide susceptibility analysis methods: A case study from Gindeberet district, Oromia Regional State, Central Ethiopia. Journal of African Earth Sciences, 180(August 2020), 104240. https://doi.org/10.1016/j.jafrearsci.2021.104240

Bishop, M. P., Young, B. W., Huo, D., Texas, A., Station, C., & States, U. (2018). Geomorphometry : Quantitative Land-Surface Analysis and Modeling . July, 1–17.

Bièvre, G., Jongmans, D., Winiarski, T., & Zumbo, V. (2012). Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrological Processes, 26(14), 2128–2142. https://doi.org/10.1002/hyp.7986

Borrelli, L. (2014). Geology, geomorphology and dynamics of the 15 February 2010 Maierato landslide (Calabria, Italy). Geomorphology, 208, 50–73. https://doi.org/10.1016/j.geomorph.2013.11.015

Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., & Castellani, M. (2002). System Sciences A geomorphological approach to the estimation of landslide hazards and risks in Umbria , Central Italy. May 2014. https://doi.org/10.5194/nhess-2-57-2002

Chen, W. (2018). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 164, 135–149. https://doi.org/10.1016/j.catena.2018.01.012

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B

Crozier, M. (2010). Landslide geomorphology: An argument for recognition, with examples from New Zealand. Geomorphology, 120(1), 3–15. https://doi.org/10.1016/j.geomorph.2009.09.010

De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., Chu, W., Antrop, M., De Maeyer, P., Finke, P., Van Meirvenne, M., Verniers, J., & Crombé, P. (2013). Application of the topographic position index to heterogeneous landscapes. Geomorphology, 186, 39–49. https://doi.org/10.1016/j.geomorph.2012.12.015

Denyer, D., & Tranfield, D. (2009). Producing a Systematic Review. In The SAGE Handbook of Organizational Research Methods (pp. 671–689).

Du, P., Xu, Y., Guo, Y., & Li, H. (2023). Assessing loess landslide volume using high-precision UAV-derived DEM: A case study of the 15 March 2019 landslide in Zaoling Township, Xiangning County in North China. Natural Hazards Research, 3(4), 640–645. https://doi.org/10.1016/j.nhres.2023.07.006

Fang, K., Tang, H., Li, C., Su, X., An, P., & Sun, S. (2023). Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geoscience Frontiers, 14(1), 101493. https://doi.org/10.1016/j.gsf.2022.101493

Haskins, D. M., Correll, C. S., Foster, R. a, Chatoian, J. M., Fincher, J. M., Strenger, J. M., Keys Jr., J. E., Maxwell, J. R., & King, T. (1999). A geomorphic classification system. Abstracts with Programs - Geological Society of America, 31, 254.

Harzing, Anne-Wil. 2010. The Publish or Perish Book. Melbourne, Australia: Tarma Software Research

Heckmann, T. (2015). Graph theory-Recent developments of its application in geomorphology. In Geomorphology (Vol. 243, pp. 130–146). https://doi.org/10.1016/j.geomorph.2014.12.024

Heckman, K. A., Swanston, C. W., Torn, M. S., Hanson, P. J., Nave, L. E., Porras, R. C., … Bill, M. (2021). Soil organic matter is principally root derived in an Ultisol under oak forest. Geoderma, 403(April), 115385. https://doi.org/10.1016/j.geoderma.2021.115385

Hoff, R. (2018). Geology, geomorphology and wine-growing landscape: An approach to regional identity for viticulture at Campanha Wine Region, Brazil. Revista Brasileira de Geomorfologia, 19(4), 757–776. https://doi.org/10.20502/rbg.v19i4.1388

Hooke, J. M. (2020). Changing landscapes: Five decades of applied geomorphology. Geomorphology, 366, 106793. https://doi.org/10.1016/j.geomorph.2019.06.007

Hutagalung, A. (1967). Fundamental of Geomorphology. In Angewandte Chemie International Edition, 6(11), 951–952.

Juliev, M., Mergili, M., Mondal, I., Nurtaev, B., Pulatov, A., & Hübl, J. (2019). Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Science of the Total Environment, 653, 801–814. https://doi.org/10.1016/j.scitotenv.2018.10.431

Keller, E., Adamaitis, C., Alessio, P., Anderson, S., Goto, E., Gray, S., Gurrola, L., & Morell, K. (2020). Applications in geomorphology. Geomorphology, 366, 106729. https://doi.org/10.1016/j.geomorph.2019.04.001

Kinde, M., Getahun, E., & Jothimani, M. (2024). Geotechnical and slope stability analysis in the landslide-prone area: A case study in Sawla – Laska road sector, Southern Ethiopia. Scientific African, 23, e02071. https://doi.org/10.1016/j.sciaf.2024.e02071

Lillesand., dan Kiefer. (1994). Remote Sensing and Image Interpretation. Third Edition. John Wiley and Sons, New York.

Liu, M., Hu, Y., Chang, Y., He, X., & Zhang, W. (2009). Land use and land cover change analysis and prediction in the upper reaches of the minjiang river, China. Environmental Management, 43(5), 899–907. https://doi.org/10.1007/s00267-008-9263-7

Martínez-Graña, A. M., Silva, P. G., Goy, J. L., Elez, J., Valdés, V., & Zazo, C. (2017). Geomorphology applied to landscape analysis for planning and management of natural spaces. Case study: Las Batuecas-S. de Francia and Quilamas natural parks, (Salamanca, Spain). Science of the Total Environment, 584–585, 175–188. https://doi.org/10.1016/j.scitotenv.2017.01.155

Muddarisna, E. D. Yuniwati, H. Masruroh, and A. Rahman, “J OURNAL OF D EGRADED AND M INING L ANDS M ANAGEMENT The effectiveness of cover crops on soil loss control in Gede catchment of Malang Regency , Indonesia,” vol. 8, no. 2, pp. 2673–2679, 2021.

Nisa, A. K., Irawan, M. I., & Pratomo, D. G. (2019). Identification of Potential Landslide Disaster in East Java Using Neural Network Model (Case Study: District of Ponogoro). Journal of Physics: Conference Series, 1366(1). https://doi.org/10.1088/1742-6596/1366/1/012095

Nsengiyumva, J. B., Luo, G., Amanambu, A. C., Mind’je, R., Habiyaremye, G., Karamage, F., Ochege, F. U., & Mupenzi, C. (2019). Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Science of the Total Environment, 659(818), 1457–1472. https://doi.org/10.1016/j.scitotenv.2018.12.248

Nguyen, L. C., Tien, P. Van, & Do, T. N. (2020). Deep-seated rainfall-induced landslides on a new expressway: a case study in Vietnam. Landslides, 17(2), 395–407. https://doi.org/10.1007/s10346-019-01293-6

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015

Putra, A. N., Nita, I., Jauhary, M. R. Al, Nurhutami, S. R., & Ismail, M. H. (2021). Landslide risk analysis on agriculture area in pacitan regency in east java indonesia using geospatial techniques. Environment and Natural Resources Journal, 19(2), 141–152. https://doi.org/10.32526/ennrj/19/2020167

Samodra, G. (2014). Development of Risk Analysis Technique and Its Application to Geo Disaster Management in Indonesia. Ph.D Dissertation: Kyusu University, Japan.

Sermin, T., & Jeff, J. (2008). GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. In Journal of Applied Sciences (Vol. 8, Issue 6, pp. 910–921).

Sofia, G. (2020). Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward. Geomorphology, 355. https://doi.org/10.1016/j.geomorph.2020.107055

Stehman, S. V., & Czaplewski, R. L. (1998). Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sensing of Environment, 64(3), 331–344. https://doi.org/10.1016/S0034-4257(98)00010-8

Sutanto. (1986). Penginderaan Jauh Jilid I. Yogyakarta: Gadjah Mada University Press.

The, S., Landslide, D., Granada, C., Azan, M., & Jime, A. (2013). Relationships Between Slope Instabilities , Active Tectonics and Drainage Relationships Between Slope Instabilities , Active ´ dar Tectonics and Drainage Systems : The Du Landslide Case ( Granada , Southern Spain ). July 2015. https://doi.org/10.1007/978-3-642-31445-2

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning and Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464

Tooth, S., & Viles, H. (2014). 10 Reasons Why Geomorphology is Important. 17. http://geomorphology.org.uk/sites/default/files/10_reasons_full.pdf

Waele, J. De. (2011). Geomorphology and natural hazards in karst areas: A review. In Geomorphology (Vol. 134, Issue 1, pp. 1–8). https://doi.org/10.1016/j.geomorph.2011.08.001

Wang, H., Wang, J., & Zhang, G. hui. (2021). Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China. Catena, 201(3). https://doi.org/10.1016/j.catena.2021.105235

Weiss, a. (2001). Topographic position and landforms analysis. Poster Presentation, ESRI User Conference, San Diego, CA, 64, 227–245. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Topographic+Position+and+Landforms+Analysis#0

Vandromme, R., Thiery, Y., Bernardie, S., & Sedan, O. (2020). Version of Record: https://www.sciencedirect.com/science/article/pii/S0169555X20302798.

Zêzere, J. L., Trigo, R. M., & Trigo, I. F. (2005). Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Science, 5(3),

DOI: https://doi.org/10.24815/ijdm.v7i1.32884

Refbacks

  • There are currently no refbacks.
Copyright (c) 2024 Heni Masruroh, Syamsul Bachri, Purwanto Purwanto, Tuti Mutia Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal Content

Browse
  • By Issue
  • By Author
  • By Title
  • Other Journals
  • Categories
User

Indexed in:

        

Tools:

Visitors: 

 

Template:

Font Size

Keywords Bangladesh COVID-19 Indonesia climate change community community resilience coping strategies disaster disaster management disaster preparedness disaster risk reduction institutional effectiveness knowledge local wisdom natural disaster preparedness religiosity resilience tsunami vaccination vulnerability
Article Tools
Abstract
Print this article
Indexing metadata
How to cite item
Finding References
Review policy
Email this article (Login required)
Email the author (Login required)
Open Journal Systems