Analyzing the Effect of Climate Anomalies (ENSO and IOD) on Environments Based on Computing in the Western Sumatra Region (Equatorial Region of Indonesia)

Melly Ariska1,2, Adam Darmawan2, Supari Supari3, Muhammad Irfan4, and Iskhaq Iskandar4

1Graduate School of Mathematics and Natural Sciences, University of Sriwijaya, Inderalaya 30662, Indonesia
2Department of Physics Education, Faculty of Teacher Training and Education, University of Sriwijaya, Inderalaya 30662, Indonesia
3Agency of Meteorology Climatology and Geophysics (BMKG), Jakarta 10610, Indonesia
4Department of Physics, Faculty of Mathematics and Natural Sciences, University of Sriwijaya, Inderalaya 30662, Indonesia

Abstract: ENSO (El Niño - Southern Oscillation) is a form of climate deviation in the Pacific Ocean characterized by an increase in sea surface temperature (SST) in the Central and Eastern parts of the equator. This phenomenon plays an important role in seasonal climate variations in Indonesia, especially in the equatorial region of Indonesia. This study aimed to analyze the impact of a computational climate anomaly in the equatorial region of Indonesia. The method used in this study was a linear regression method by comparing two statistical engines, namely the Python coding language and SPSS. The influence of ENSO is felt in several areas of Indonesia which are characterized by lower amounts of rainfall during the ENSO year compared to the pre- and post-ENSO period. The El-Niño events also affect the entry of the dry season and its duration throughout the evolution of the ENSO event. Reducing the amount of annual rainfall is negatively correlated with increasing the number of forest fires per year. Machine learning-based rainfall analysis using Google Colab and Python gives identical results to SPSS-based analysis, so the results of machine learning-based analysis have an accurate value. Climate change will result in changes in annual and interannual climate patterns such as a delay in the start of the rainy season or dry season. In addition, the rainy season period is also expected to be shorter. Apart from ENSO, there are also symptoms of climate deviations produced by the interaction of the sea and the atmosphere in the Indian Ocean around the equator, which is called the IOD (Indian Ocean Dipole). In addition to looking at the impact of climate anomaly on the environment, this study also examines the relationship between climate change anomalies and rainfall using the SPSS method and the Python coding language by comparing the accuracy of the computation generated output. The influence of IOD and ENSO on the rain-type region with the Equatorial rain-type region is not significant enough. The relationship between IOD and ENSO is not strong enough for the equatorial region and there is no shift in the peak onset in this region.

Keywords: Climate Anomalies, ENSO, IOD, Computing, Equatorial Region
Introduction
Climate change is a change in several climate indicators caused directly or indirectly by human activities. One indicator of climate change is rainfall. Factors contributing to climate change include the greenhouse gas effect, land use change, and industrial waste. The impact of climate change is high and uneven rainfall in several areas (Iskandar, 2010; Ariska et al., 2022). Changes in the climate system drive changes in the frequency, intensity, extent of coverage, duration and timing of extreme weather and climate events (IPCC, 2018; Ariska et al., 2022). Region of Indonesia equatorial rain pattern is related to the movement of the north and south convergence zones which follow the apparent motion of the sun (Fitra et al., 2019; Misnawati and Perandawanti, 2019). The convergence zone is a place where two air masses from the two hemispheres meet. Convergence is an air mass that moves towards a point then moves upwards. The area where the convergence phenomenon occurs is referred to as the convergence zone (Sipayung et al., 2007; Gisian et al., 2016; Ariska, Akhsan and Muslim, 2022). The location of the convergence zone always changes every 14 days following the apparent annual motion of the sun from north to south and vice versa with coordinates 23.5° North Latitude – 23.5° South Latitude.

Rainfall is closely related to climate change. In determining climate change with extreme changes in Indonesia, indicators that can be used are high amounts of rainfall and long dry seasons (Melly et al., 2019). The dry season can last longer and the rainy season can be very short. A very long dry season can reduce land productivity in an area. The rainy season can last shorter with high intensity and has the potential for flood disasters (Ramage, 1968; Saji and Vinayachandran, 1999).

Rainfall variability in Indonesia is included in the high category. Rainfall in Indonesia is influenced by various weather and climate factors, both locally and globally (Aldrian and Dwi Susanto, 2003). Phenomena that have an influence on rainfall in Indonesia are the Madden Julian Oscillation (MJO), El Niño Southern Oscillation (ENSO) and the Dipole Mode Index (IOD) (Putra et al, 2020). Most of the rainfall in the Indonesian region is affected by ENSO in the moderate category (Ye and Li, 2017; Tavakol et al, 2020). ENSO has low influence in some parts of western and eastern Indonesia. As for the areas of Indonesia that have high influence, they can be found in eastern Indonesia. ENSO (El Niño Southern Oscillation) is a symptom of temperature fluctuations at sea level that occur in the eastern Pacific Ocean from normal conditions caused by differences in temperature and pressure. ENSO consists of two events, namely El Niño and La Niña (Kumar et al, 2019; Tavakol, Rahmani et al, 2020). El Niño is a form of climate deviation in the Pacific Ocean which is marked by an increase in Sea Surface Temperature (SST) in the south and east of the equator (Hermon, 2014; Melly et al, 2019). El Niño and La Niña events can cause an increase or decrease in rainfall intensity.

IOD is a phenomenon of sea surface temperature anomaly between the western Indian Ocean and the eastern Indian Ocean. The temperature anomaly that occurs forms an oscillation that occurs periodically. Because of the temperature difference between the two sides, there will be a long drought on one side and very heavy rain on the other. IOD is one of the factors that determines climate conditions in Indonesia and countries in the Indian Ocean Region. Research related to the relationship between the Indian Ocean Dipole and rainfall that occurs in the province of West Sumatra. The results of this study state that the IOD phenomenon causes the West Sumatra Province to always be wetter and the rainfall is always higher than other Indonesian regions throughout the year (Brandes et al, 2002; Baeda et al, 2019; Ariska et al, 2022).

This study examines the impact of ENSO and IOD on the environment, especially in areas with Equatorial rainfall patterns on the surrounding environment. It is undeniable that the content of global warming and climate change is a strategic content that is a major global topic that requires an immediate solution. Apart from looking at these impacts, this paper also compares the manual method and uses Python coding to see the relationship between the impact of ENSO and IOD on the environment. A comparison of these two methods is used to see the most appropriate and accurate method for analyzing extreme climate change in the Indonesian Region based on computation.

Methodology
Correlation analysis was carried out to find out whether there is a relationship between the research variables. There are two types of correlation tests, namely parametric and non-parametric correlation tests (Harrison, 1998; Strategy, 2011; Zhan et al., 2017; Handoko et al., 2019; Bhatti et al., 2020). The use of the correlation test is based on the results of the normality test of the two variables. If the two variables are normally distributed then use the parametric correlation test. An example of a parametric correlation test is the Pearson correlation test.

Table 1 Guidelines for correlation analysis based on the value of the correlation coefficient

<table>
<thead>
<tr>
<th>Coefficient intervals</th>
<th>Relationship level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 – 0.199</td>
<td>Very Low</td>
</tr>
<tr>
<td>0.20 – 0.399</td>
<td>Low</td>
</tr>
<tr>
<td>0.40 – 0.599</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.60 – 0.799</td>
<td>Strong</td>
</tr>
<tr>
<td>0.80 – 1.000</td>
<td>Very Strong</td>
</tr>
</tbody>
</table>

If the two variables are not normally distributed, a non-parametric correlation test is used. An example of a non-parametric correlation test is the Spearman correlation test. The correlation test was carried out with a
significance level of 5%. Basic decision making on correlation analysis can be seen in the Table 1.

Linear regression analysis was carried out to find out how much influence the El Niño Southern Oscillation (ENSO) variable represented by the Niño3.4 Index and the Indian Ocean Dipole (IOD) represented by DMI had on rainfall in the equatorial region in the 1991 – 2020 period and to see the trend of significance between both of them. Linear regression analysis is performed entirely on machine learning. The system in machine learning will divide the data into two parts, namely train data and test data. Linear regression analysis is carried out by studying the regression graph generated on the output data generated on machine learning. The linear regression equation is mathematically formulated as:

\[
Y = a + bX
\]

\(Y = \text{Response Variable}\)
\(a = \text{constant}\)
\(b = \text{regression constant}\)
\(X = \text{Independent variable}\)

Results and Discussion

ENSO and IOD affect variations in rainfall in Indonesia (Harrison, 1998; Strategy, 2011). Increases and decreases in the amount of rainfall will have an impact on the environment in the region. Rainfall that occurs in a prolonged period has the potential to cause flooding, while a decrease in the amount of rainfall for a long time can cause drought and has the potential to cause forest and land fires. To study this, the authors used sample data on the area of forest and land fires, as well as the number of floods in 2008 – 2020. Data on the area of forest and land fires was obtained from the website https://sipongi.menlhk.go.id, while data on the number of floods was obtained from website https://gis.bnpb.go.id/.

![Figure 1 Graph of forest fire area in Riau Province](image1)

Based on the results of data analysis, the two provinces experienced two peaks of forest fires. The main peak in both provinces occurred in 2015. Riau Province is the area with the highest fire area with an area of more than 180000 hectares, and West Sumatra province with an area of 3940 hectares. The second peak in Riau province occurred in 2019 with an area of 90,550 ha, while in the province of West Sumatra it occurred in 2018 with an area of 2,421 ha.

<table>
<thead>
<tr>
<th>Area of forest fires in Riau province</th>
<th>Significance level</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total rainfall in SM Japura</td>
<td>0,015</td>
<td>-0,654</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of forest fires in West Sumatra province</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance level</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Total rainfall in SM Minangkabau</td>
</tr>
</tbody>
</table>

![Figure 2 Graph of forest fire area in West Sumatra Province](image2)

Table 2 shows the correlation analysis of the amount of rainfall and the area of forest fires. Meanwhile, based on the significance level guidelines in Table 2, it was found that the amount of rainfall in the Japura area has a relationship with the area of forest fires in the province of Riau, while the amount of rainfall in the Minangkabau area has no relationship with the area of forest fires in the province of West Sumatra. Meanwhile, based on the correlation coefficient guidelines in Table 1, the results show that the amount of rainfall in the Japura area has a strong relationship with the area of forest fires.
in the province of Riau, while the amount of rainfall in the Minangkabau area has a low category relationship with the area of forest fires in the province of West Sumatra. Both have a negative correlation relationship. This confirms that a decrease in the amount of rainfall causes an increase in the area of forest and land fires.

![Graph A](image1.png) ![Graph B](image2.png)

Figure 3 Correlations between the amount of rainfall and the area of forest and land fires in Riau Province (a) and West Sumatra Province (b). The numbers of flood events in Riau Province (c) and West Sumatra Province (d). Correlations of the amount of rainfall and flood disasters in Riau Province (e) and West Sumatra Province (f).

The results of an analysis of the number of flood disasters found an increasing trend in the provinces of Riau and West Sumatra. The two provinces had the highest number of flood disasters in 2020.

Based on the guidelines for the significance level in Table 3, the results show that the amount of rainfall in the Japura area has no relationship with the number of flood events in the province of Riau and the amount of rainfall in the
Minangkabau area has no relationship with the number of flood events in the province of West Sumatra. Meanwhile, based on the Correlation coefficient guidelines in Table 3, it was found that the amount of rainfall in Japura and Minangkabau BC had a very low category relationship to the number of flood events in Riau and West Sumatra provinces. Both seem to have a negative correlation. Based on the correlation analysis that has been carried out, an increase in the amount of rainfall is not always the cause of an increase in the number of floods in the provinces of Riau and West Sumatra.

To find out the causes of the increase in the number of floods, it is necessary to carry out further research by considering other factors, such as the condition of the waterways or drainage which plays a role in the flow of rainwater. In addition, the height factor also needs to be considered. Linear regression analysis was carried out using machine learning in the form of a regression algorithm with the Python programming language and run on Google Colab.

The results of the analysis obtained in the form of graphs and linear regression equations are shown in Figure 4a,b. Correlation analysis based on the criteria guidelines contained in Table 4 obtained the value of the correlation coefficient with the following criteria.

<table>
<thead>
<tr>
<th>Number of floods in Riau province</th>
<th>Significance level</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total rainfall in SM Japura</td>
<td>0.740</td>
<td>-0.102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The number of floods in the province of West Sumatra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total rainfall in SM Minangkabau</td>
</tr>
<tr>
<td>Significance level</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>0.872</td>
</tr>
</tbody>
</table>

The results of linear regression analysis using SPSS obtained regression equations and regression graphs. The results of the regression analysis for all variables produce a negative predictive trend. This confirms that an increase in the value of the Niño3.4 and DMI indices will lead to a decrease in the amount of rainfall. Conversely, a decrease in the Niño3.4 and DMI indices will cause an increase in the amount of rainfall. The linear regression graph between ENSO and the amount of rainfall can be seen in Figure 4c. Meanwhile, the linear regression graph between IOD and the amount of rainfall can be seen in Figure 4d.

![Graphs showing correlation analysis](image1)

Figure 4 Linear regressions analysis of the Niño 3.4 index (a) and DMI index (b) on rainfall. Results of linear regressions of ENSO (c) and IOD (d) rainfall of SM Japura using SPSS.
Table 4 Criteria for the results of correlation analysis using SPSS

<table>
<thead>
<tr>
<th>SM</th>
<th>SM</th>
<th>SM Hang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japura</td>
<td>Minangkabau</td>
<td>Nadim</td>
</tr>
<tr>
<td>Niño3.4</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very low</td>
</tr>
<tr>
<td>DMI</td>
<td>Very low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very low</td>
</tr>
</tbody>
</table>

Based on the normality test, correlation analysis, and linear regression analysis using SPSS, identical results were obtained with the results of the analysis carried out using python and google collab so that they showed the same research results. The difference is only seen in the value of the correlation coefficient and the regression equation, namely in the second decimal place after the comma. This is because python displays all decimal places, while SPSS is set to only display two decimal places, so SPSS will round up or round down. However, this did not have a significant effect on the results of the study.

Conclusion
Reducing the amount of annual rainfall is negatively correlated with increasing the number of forest fires per year. A decrease in the amount of rainfall can cause the number of forest fires to increase significantly. Machine learning-based rainfall analysis using google colab and python gives identical results to SPSS-based analysis, so the results of machine learning-based analysis have an accurate value.

Acknowledgement
I thank all those who have helped in this research. The Indonesian Central BMKG which has provided the widest possible data to the team in obtaining rainfall data. We also thank the Oceanography research team at the Faculty of Mathematics and Natural Sciences, Sriwijaya University, which has assisted researchers in processing research data.

Reference

