Antioxidant Potential of Phenolic Compounds from Sonneratia caseolaris Mangrove Roots: Isolation, Spectroscopic Analysis, Molecular Docking, Molecular Dynamic, and In-Vitro Studies

Netti Herawati*, Suriati Eka Putri, Satria Putra Jaya Negara, Rizal Irfandi, Maulida Mazaya, Abd Rahman

Abstract


Free radicals contribute to the onset of various degenerative diseases, highlighting the need for safe and effective antioxidants. Given the potential side effects associated with synthetic antioxidants, Sonneratia caseolaris is considered a promising natural alternative. This study aims to isolate secondary metabolites from the roots of S. caseolaris, evaluate their antioxidant activity, and analyze their molecular interactions. Extraction was conducted using a range of solvents, and antioxidant activity was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The ethyl acetate fraction exhibited the highest antioxidant activity and was subsequently subjected to isolation procedures. From this fraction, a white crystalline compound with a melting point of 251–253°C was obtained. Spectroscopic analysis identified the compound as 3,4,5-trihydroxybenzoate, a type of phenolic compound. This compound exhibited very strong antioxidant activity, with an IC₅₀ value of 6.63 µg/mL, which is significantly lower than that of ascorbic acid (17.64 µg/mL), indicating higher potency. Molecular docking analysis showed that 3,4,5-trihydroxybenzoate formed strong interactions with active residues of cytochrome c peroxidase, particularly Trp51 and Gly112, through hydrogen bonds and hydrophobic interactions. Additionally, molecular dynamics simulations revealed that the compound-enzyme complex exhibited greater structural stability than the control (ascorbic acid), as indicated by lower residue fluctuations in root mean square deviation (RMSD) and root mean square fluctuation (RMSF) analysis analyses. These findings support the potential of Sonneratia caseolaris as a natural source for the development of antioxidant compounds with strong biological activity and favorable molecular interaction profiles


Keywords


3,4,5-trihydroxybenzoic acid, extract, mangrove roots, phenolic

Full Text:

PDF

References


Akram, H., Hussain, S., Mazumdar, P., Chua, K.O., Butt, T.E., & Harikrishna, J.A. 2023. Mangrove health: a review of functions, threats, and challenges associated with mangrove management practices. Forests, 14(9):1–38. https://doi.org/10.3390/%20f14091698

Arslan, H., Ondul, K.E., Ozay, Y., Canli, O., Ozdemir, S., Tollu, G., & Dizge, N. 2023. Antimicrobial and antioxidant activity of phenolic extracts from walnut (Juglans regia L.) green husk by using pressure-driven membrane process. Journal of Food Science and Technology, 60(1):73–83. https://doi.org/10.1007/s13197-022-05588-w

Audah, K.A., Ettin, J., Darmadi, J., Azizah, N.N., Anisa, A.S., Hermawan, T.D.F., Tjampakasari, C. R., Heryanto, R., Ismail, I. S., & Batubara, I. 2022. Indonesian mangrove sonneratia caseolaris leaves ethanol extract is a potential super antioxidant and anti methicillin-resistant staphylococcus aureus drug. Molecules, 27(23):1-18. https://doi.org/10.3390/molecules27238369

Ayadi, J., Debouba, M., Rahmani, R., & Bouajila, J. 2023. The phytochemical screening and biological properties of brassica napus l. Var. Napobrassica (rutabaga) seeds. Molecules, 28(17):1-23. https://doi.org/10.3390/molecules28176250

Aznawi, A. A., Basyuni, M., Hanafiah, D.S., Larekeng, S.H., & Mulya Sari, S.P. 2024. Impact of pest and diseases on mangrove forest rehabilitation in indonesia: a review. Online Journal of Biological Sciences, 24(4):728–738. https://doi.org/10.3844/ojbsci.2024.728.738

Bahri, S., Setiawan, W.A., Setiawan, F., Lutfiah, R., Juliasih, N.L.G.R., Ambarwati, Y., Ahmadi, P., Arai, M., Hendri, J., Hadi, S., & Setiawan, A. 2024. Activity of mangrove-derived fusarium equiseti 20CB07RF extract against clinical, antibacterial-resistant pseudomonas aeruginosa. Science and Technology Indonesia, 9(3):594–604. https://doi.org/10.26554/sti.2024.9.3.594-604

Castaño, J. D., Zhou, M., & Schilling, J. S. (2021). Towards an Understanding of Oxidative Damage in an α-L-Arabinofuranosidase of Trichoderma reesei: a Molecular Dynamics Approach. Applied Biochemistry and Biotechnology, 193(10):3287. https://doi.org/10.1007/s12010-021-03594-w

Charlton, N.C., Mastyugin, M., Török, B., & Török, M. 2023. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity. Molecules, 28(3):30-47. :https://doi.org/10.3390/molecules28031057

Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C.K. 2020. Author correction: structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1):1–9. https://doi.org/10.1038/s41598-020-62493-y

Dávalos, J.Z., Lima, C.F.R.A.C., Santos, L.M. N. B. F., Romero, V. L., & Liebman, J. F. 2019. Thermochemical and structural studies of gallic and ellagic acids. Journal of Chemical Thermodynamis, 129:108-113. https://doi.org/10.1016/j.jct.2018.09.027

Degotte, G., Frederich, M., Francotte, P., Franck, T., Colson, T., Serteyn, D., & Mouithys-Mickalad, A. 2023. Targeting myeloperoxidase activity and neutrophil ros production to modulate redox process: effect of ellagic acid and analogues. Molecules, 28(11):53-58. https://doi.org/10.3390/molecules28114516

Elfita, Oktiansyah, R., Mardiyanto, Setiawan, A., & Widjajanti, H. 2024. Combination effect of extracts and pure compounds of endophytic fungi isolated from sungkai (peronema canescens) leaves on antioxidant activity. Science and Technology Indonesia, 9(1):69–76. https://doi.org/10.26554/sti.2024.9.1.69-76

Hasanuzzaman, M., & Fujita, M. 2022. Plant oxidative stress: biology, physiology and mitigation. Plants, 11(9):2–5. https://doi.org/10.3390/plants11091185

Indriaty, Djufri, Ginting, B., & Hasballah, K. 2023. Phytochemical screening, phenolic and flavonoid content, and antioxidant activity of Rhizophoraceae methanol extract from Langsa, Aceh, Indonesia. Biodiversitas, 24(5):2865–2876. https://doi.org/10.13057/biodiv/d240541

Kundu, P., Debnath, S.L., Ahad, M.F., Devnath, H.S., Saha, L., Karmakar, U.K., & Sadhu, S. K. 2023. Exploration of in vivo and in vitro biological effects of sonneratia caseolaris (l.) Fruits supported by molecular docking and admet study. BioMed Research International, 2023:12. https://doi.org/10.1155/2023/4522446

Llauradó Maury, G., Méndez Rodríguez, D., Hendrix, S., Escalona Arranz, J.C., Fung Boix, Y., Pacheco, A.O., García Díaz, J., Morris Quevedo, H.J., Ferrer Dubois, A., Isaac Aleman, E., Beenaerts, N., Méndez Santos, I. E., O, Ratón, T., Cos, P., & Cuypers, A. 2020. Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in cuba. Antioxidants, 9(11):1–39. https://doi.org/10.3390/antiox9111048

Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A.G. 2022. Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2):48–78. https://doi.org/10.3390/oxygen2020006

Mattioli, R., Francioso, A., & Trovato, M. 2022. Proline affects flowering time in arabidopsis by modulating flc expression: a clue of epigenetic regulation. Plants, 11(18):1–14. https://doi.org/10.3390/plants11182348

Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., & Shen, G. 2023. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14(June):1–18. https://doi.org/10.3389/fpls.2023.1110622

Moazzen, A., Öztinen, N., Ak-Sakalli, E., & Koşar, M. 2022. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon, 8(9):10467-10472. https://doi.org/10.1016/j.heliyon.2022.e10467

Okatan, V., Gündeşli, M.A., Kafkas, N.E., Attar, Ş.H., Kahramanoğlu, İ., Usanmaz, S., & Aşkın, M.A. 2022. Phenolic compounds, antioxidant activity, fatty acids and volatile profiles of 18 different walnut (juglans regia l.) Cultivars and genotypes. Erwerbs-Obstbau, 64(2):247–260. https://doi.org/10.1007/s10341-021-00633-y

Pagarra, H., Rahman, R.A., Hartati, Rachmawaty, Hala, Y., & Esivan, S.M.M. 2022. Phytochemical screening, antimicrobial and antioxidant activity from sonneratia caseolaris leaves extract. Jurnal Teknologi, 84(5):59–66. https://doi.org/10.11113/jurnalteknologi.v84.17647

Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R.M. 2023. The chemistry behind the folin-ciocalteu method for the estimation of (poly)phenol content in food: total phenolic intake in a mediterranean dietary pattern. Journal of Agricultural and Food Chemistry, 71(46):17543–17553. https://doi.org/10.1021/acs.jafc.3c04022

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. 2017. Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017:210. https://doi.org/10.1155/2017/8416763

Platzer, M., Kiese, S., Asam, T., Schneider, F., Tybussek, T., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. 2022. Quantitative structure-property relationship (QSPR) of plant phenolic compounds in rapeseed oil and comparison of antioxidant measurement methods. Processes, 10(7):1281. https://doi.org/10.3390/pr10071281

Platzer, M., Kiese, S., Tybussek, T., Herfellner, T., Schneider, F., Schweiggert-Weisz, U., & Eisner, P. 2022. Radical scavenging mechanisms of phenolic compounds: a quantitative structure-property relationship (QSPR) study. Frontiers in Nutrition, 9(April):4–8. https://doi.org/10.3389/fnut.2022.882458

Raza, A., Salehi, H., Rahman, M. A., Zahid, Z., Madadkar Haghjou, M., Najafi-Kakavand, S., Charagh, S., Osman, H. S., Albaqami, M., Zhuang, Y., Siddique, K. H. M., & Zhuang, W. 2022. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Frontiers in Plant Science, 13(9):1-12. https://doi.org/10.3389/fpls.2022.961872

Rajendran, S., G, N., P, B. D., & Kanakam, C. C. (2017). Docking Antioxidant Activity on Hydroxy(diphenyl)aceticacid and its Derivatives. https://innovareacademics.in/journals/index.php/ajpcr/article/download/18299/11637

Rozirwan., Hamid, H., Redho, Y,N., Rezi, A., Nadila, N.K., Fauziyah., Wike, A.E.P., & Riris, A. 2023. Antioxidant activity, total phenolic, phytochemical content, and hplc profile of selected mangrove species from Tanjung api-api port area, South Sumatra, Indonesia. Tropical Journal of Natural Product Research Herbals, 7:2145–2151. http://www.doi.org/10.26538/tjnpr/v7i7.29

Rozirwan, Saputri, A.P., Nugroho, R.Y., Khotimah, N.N., Putri, W.A.E., Fauziyah, & Purwiyanto, A.I.S. 2023. An assessment of pb and cu in waters, sediments, and mud crabs (scylla serrata) from mangrove ecosystem near Tanjung Api-Api Port Area, South Sumatra, Indonesia. Science and Technology Indonesia, 8(4):675–683. https://doi.org/10.26554/sti.2023.8.4.675-683

Schiavon, M., Nardi, S., Pilon-Smits, E.A.H., & Dall’Acqua, S. 2022. Foliar selenium fertilization alters the content of dietary phytochemicals in two rocket species. Frontiers in Plant Science, 13:1–16. https://doi.org/10.3389/fpls.2022.987935

Sudhir, S., Arunprasath, A., & Sankara Vel, V. 2022. A critical review on adaptations, and biological activities of the mangroves. Journal of Natural Pesticide Research, 1:100006. https://doi.org/10.1016/j.napere.2022.100006

Šponer, J., & Špačková, N. (2007). Molecular dynamicss simulations and their application to four-stranded DNA. Methods, 43(4), 278–290. https://doi.org/10.1016/j.ymeth.2007.02.004

Susanti, N., Mustika, A., Khotib, J., Muti’ah, R., & Rochmanti, M. 2023. Phytochemical, metabolite compound, and antioxidant activity of clinacanthus nutans leaf extract from Indonesia. Science and Technology Indonesia, 8(1):38–44. https://doi.org/10.26554/sti.2023.8.1.38-44

Tan, Y., Duan, Y., Chi, Q., Wang, R., Yin, Y., Cui, D., Li, S., Wang, A., Ma, R., Li, B., Jiao, Z., & Sun, H. 2023. The role of reactive oxygen species in plant response to radiation. International Journal of Molecular Sciences, 24(4):1–17. https://doi.org/10.3390/ijms24043346

Tang, Y., Yan, Y., Mao, J., Ni, J., & Qing, H. 2023. Different behavior of food-relatid benzoic. Ageing Research Reviews, 101865. https://doi.org/10.1016/j.foodchem.2024.141014

Tarazi, H., El-Gamal, M. I., & Oh, C.-H. (2019). Discovery of highly potent V600E-B-RAF kinase inhibitors: Molecular modeling study. Bioorganic & Medicinal Chemistry, 27(4), 655–663. https://doi.org/10.1016/j.bmc.2019.01.004.

Xue, S., Zang, Y., Chen, J., Shang, S., Gao, L., & Tang, X. 2022. Ultraviolet-B radiation stress triggers reactive oxygen species and regulates the antioxidant defense and photosynthesis systems of intertidal red algae neoporphyra haitanensis. Frontiers in Marine Science, 9:1–14. https://doi.org/10.3389/fmars.2022.1043462

Yamauchi, M., Kitamura, Y., Nagano, H., Kawatsu, J., & Gotoh, H. 2024. DPPH measurements and structure—activity relationship studies on the antioxidant capacity of phenols. Antioxidants, 13(3):19-28. https://doi.org/10.3390/antiox13030309

Zhang, Z., Liao, L., Moore, J., Wu, T., & Wang, Z. 2009. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry, 113(1):160–165. https://doi.org/10.1016/j.foodchem.2008.07.061

Yang, R. Y., Tsou, S. C. S., Lee, T. C., Chang, L.C., Kuo, G., & Lai, P.Y. 2006. Moringa, a novel plant rich in antioxidants, bioavailable iron, and nutrients. American Chemical Soc iety Symposium. 925(17):224-239. https://pubs.acs.org/doi/abs/10.1021/bk-2006-0925.ch017




DOI: https://doi.org/10.24815/jipi.v9i2.44821

Article Metrics

Abstract view : 32 times
PDF - 9 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal IPA & Pembelajaran IPA



JIPI (Jurnal IPA dan Pembelajaran IPA)

ISSN 2614-0500  (print) | 2620-553X (online)
Organized by Universitas Syiah Kuala 
Published by Master of Science Education Study Program Graduate School Universitas Syiah Kuala, Banda Aceh, Indonesia
Website : http://jurnal.usk.ac.id/jipi
Email     : jipi@usk.ac.id

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.