Sentiments via #Abrahamaccords on the UAE and Israel Normalization

Hafiz Fikrie, Hafid Adim Pradana, Dedik Fitra Suhermanto

Abstract


On 15 September 2020, the UAE normalized relations with Israel, which sparked controversy on Twitter with the #AbrahamAccords. By using Digital Movement Opinion (DMO) and  the concept of sentiment analysis, this study aims to determine the sentiment of public opinion that develops on Twitter media related to the normalization of this relationship. This study used a qualitative approach through the use of text mining methods using Natural language Toolkit (NLTK) as a platform in Python to analyze 490 tweets with #AbrahamAccords. The results of the study showed that the sentiment of public opinion that developed on social media Twitter was a positive sentiment with 75% of the 490 tweets. It also showed that views on the relationship between the UAE and Israel on social media Twitter via #AbrahamAccords tend to support this normalization. Some factors that influenced the positive sentiment were the role of the mass media and political actors.

 

Pada 15 September 2020, UEA melakukan normalisasi hubungan dengan Israel yang yang mengundang kontroversi di Twitter dengan #AbrahamAccords. Dengan menggunakan Digital Movement Opinion (DMO) dan konsep sentiment analisis, penelitian ini bertujuan untuk mengetahui sentimen dari opini publik yang berkembang pada media Twitter terkait dengan normalisasi hubungan tersebut. Penelitian ini menggunakan metode kualitatif melalui pemakaian metode teks mining dengan menggunakan Natural language Toolkit (NLTK) sebagai platform di Python guna menganalisis 490 tweets dengan #AbrahamAccords. Hasil penelitian menunjukkan bahwa sentimen dari opini publik yang berkembang di media sosial Twitter adalah sentimen positif dengan 75% dari 490 tweet yang di peroleh. Hal ini menunjukkan bahwa pandangan terhadap hubungan UEA dengan Israel pada media sosial Twitter melalui #AbrahamAccords cenderung mendukung adanya normalisasi tersebut. Beberapa faktor yang mempengaruhi sentiment positif yang terjadi ialah peran media massa dan aktor politik.

 


Keywords


Abraham Accords; Analisis Sentimen; Opini Publik; Public Opinion; Sentiment Analysis; Twitter

Full Text:

PDF

References


Abraham, F. (2014). Pemanfaatan Twitter sebagai media komunikasi massa: Twitter utilization as mass communication media. Jurnal Penelitian Pers Dan Komunikasi Pembangunan, 18(1), 1–30.

Ahmad, T., Alvi, A., & Ittefaq, M. (2019). The use of social media on political participation among university students: An analysis of survey results from rural Pakistan. SAGE Open, 9(3). https://doi.org/10.1177/2158244019864484

Aljazeera. (2020). Israel says formal diplomatic ties with Bahrain to begin Sunday. Aljazeera. https://www.aljazeera.com/news/2020/10/18/israel-says-formal- diplomatic-ties-with-bahrain-to-begin-sunday

Allam, R. (2020). Precedented history: Arab media coverage of the Israeli–UAE– Bahrain Normalization Agreement. Arab Media Society. https://www.researchgate.net/profile/Rasha-Allam- 2/publication/348305322_Precedented_History_Arab_Media_Coverage_of_the_I sraeli_-_UAE_-

_Bahrain_Normalization_Agreement/links/5ff7097592851c13fef61b4e/Precedent ed-History-Arab-Media-Coverage-of-the-Israeli-U

Anggito, A., & Setiawan, J. (2018). Metodologi penelitian kualitatif (E. D. Lestari (ed.); 1st ed.). Jejak.

Ardiani, L., Sujaini, H., & Tursina, T. (2020). Implementasi sentiment analysis tanggapan masyarakat terhadap pembangunan di Kota Pontianak. JUSTIN (Jurnal Sistem Dan Teknologi Informasi), 8(2), 183–190.

Bakry, G. N. (2020). Struktur jaringan pengguna Twitter dengan tagar #Bandunglawancovid19. Jurnal Komunikasi Global, 9(2), 209–229. https://doi.org/10.24815/jkg.v9i2.17478

Barisione, M., Michailidou, A., & Airoldi, M. (2019). Understanding a digital movement of opinion: The case of #RefugeesWelcome. Information, Communication & Society, 22(8), 1145–1164. https://doi.org/10.1080/1369118X.2017.1410204

Bayrak, P. (2021). Abraham accords: Palestine issue should be addressed for a peaceful Middle East. Cappadocia Journal of Area

Studies (CJAS), 3(1), 104–115. https://doi.org/10.38154/cjas.4

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Phyton (J. Steele (ed.); 1st ed.). O’Reilly Media.

Botchway, R. K., Jibril, A. B., Oplatková, Z. K., & Chovancová, M. (2020). Deductions from a Sub-Saharan African Bank’s Tweets: A sentiment analysis approach. Cogent Economics and Finance, 8(1). https://doi.org/10.1080/23322039.2020.1776006

Bowen, J. (2020). Trump puji kesepakatan damai Israel-Uni Emirat Arab-Bahrain, mengapa kesepakatan tersebut “sangat penting”? BBC News Indonesia. https://www.bbc.com/indonesia/dunia-54158695

Cheeti, S. S., Li, Y., & Hadaegh, A. (2021). Twitter based Sentiment Analysis of impact of Covid-19 on Education Globaly. International Journal of Artificial Intelligence and Applications, 12(03). https://doi.org/10.5121/ijaia.2021.12302

CNN Indonesia. (2020). Negara Arab ramai-ramai damai dengan Israel di 2020. CNN Indonesia. https://www.cnnindonesia.com/internasional/20201207200904-120- 579110/negara-arab-ramai-ramai-damai-dengan-israel-di-2020

Corcoran, C. M., Mittal, V. A., Bearden, C. E., E. Gur, R., Hitczenko, K., Bilgrami, Z., Savic, A., Cecchi, G. A., & Wolff, P. (2020). Language as a biomarker for psychosis: A natural language processing approach. Schizophrenia Research, 226, 158–166. https://doi.org/10.1016/j.schres.2020.04.032

Eriyanto, E. (2019). Hashtags and Digital Movement of Opinion Mobilization: A Social Network Analysis/SNA Study on #BubarkanKPAI vs #KamiBersamaKPAI Hashtags. Jurnal Komunikasi Indonesia, 8(3), 167–178. https://doi.org/10.7454/jki.v8i3.11591

Guzansky, Y., & Marshall, Z. A. (2020). The Abraham Accords: Immediate significance and long-term implications. Israel Journal of Foreign Affairs, 14(3), 379–389. https://doi.org/10.1080/23739770.2020.1831861

Highfield, T. (2016). Social media and everyday politics. Wiley.

Hitman, G., & Kertcher, C. (2018). The case for Arab-Israeli normalization during conflict. Journal for Interdisciplinary Middle Eastern Studies, 2, 47–70. https://doi.org/10.26351/JIMES2-13

Hitman, G., & Zwilling, M. (2022). Normalization with Israel: An analysis of social networks discourse within Gulf States. Ethnopolitics, 21(4), 423–449. https://doi.org/10.1080/17449057.2021.1901380

Holland, S., & Spetalnick, M. (2020). In break with past, UAE and Bahrain forge ties with Israel at White House. Reuters. https://www.reuters.com/article/israel-gulf- usa-idINKBN2660L1

Klar, S., Krupnikov, Y., Ryan, J. B., Searles, K., & Shmargad, Y. (2020). Using social media to promote academic research: Identifying the benefits of twitter for sharing academic work. PLoS ONE, 15(4). https://doi.org/10.1371/journal.pone.0229446

Lupton, D. (2014). Twitter: Social communication in the digital age. Information, Communication & Society, 17(5), 644–646. https://doi.org/10.1080/1369118x.2013.808366

Mcphail, T. L. (2010). Global communication: Theories, stakeholders, and trends (3rd ed.). Wiley-Blackwell.

Mohajan, H. K. (2018). Qualitative research methodology in social sciences and related subjects. Journal of Economic Development, Environment and People, 7(1). https://doi.org/10.26458/jedep.v7i1.571

Olofinlua, T. (2019). Twitter: social communication in the twitter age. Information, Communication & Society, 22(13), 2037–2038. https://doi.org/10.1080/1369118X.2019.1620824

Persson, I., & Khojasteh, J. (2021). Python packages for exploratory factor analysis. Structural Equation Modeling: A Multidisciplinary Journal, 28(6), 983–988. https://doi.org/10.1080/10705511.2021.1910037

Prabowo, W. A., & Wiguna, C. (2021). Sistem informasi UMKM bengkel berbasis web menggunakan metode scrum. Jurnal Media Informatika Budidarma, 5(1), 149– 156. https://doi.org/10.30865/mib.v5i1.2604

Putri, C. E., Damayanti, N., & Hamzah, R. E. (2020). Sadfishing phenomenon of# Justiceforaudrey (hashtag) on Twitter. Mediator: Jurnal Komunikasi, 13(1), 58– 67. https://doi.org/10.29313/mediator.v13i1.5598

Rachman, F. F., & Pramana, S. (2020). Analisis sentimen pro dan kontra masyarakat Indonesia tentang vaksin COVID-19 pada media sosial Twitter. Indonesian of Health Information Management Journal (INOHIM), 8(2), 100–109. https://doi.org/10.47007/inohim.v8i2.223

Rastogi, S., & Bansal, D. (2021). Visualization of Twitter sentiments on Kashmir territorial conflict. Cybernetics and Systems, 52(8), 642–669. https://doi.org/10.1080/01969722.2021.1949520

Remez, G. (2021). “But he was good for Israel, wasn’t he?” A reassessment of the Jewish State’s Embrace of Donald Trump. Israel Journal of Foreign Affairs, 15(1), 21–39. https://doi.org/10.1080/23739770.2021.1904624

Rill, S., Reinel, D., Scheidt, J., & Zicari, R. V. (2014). PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowledge-Based Systems, 69(1), 24–33. https://doi.org/10.1016/J.KNOSYS.2014.05.008

Ritonga, E. Y. (2018). Teori agenda setting dalam ilmu komunikasi. JURNAL SIMBOLIKA: Research and Learning in Communication Study (E-Journal), 4(1), 32–41. https://doi.org/10.31289/simbollika.v4i1.1460

Ruger, A. H., Suyanto, M., & Kurniawan, M. P. (2021). Sentimen analisis pelanggan Shopee di Twitter dengan Algoritma Naive Bayes. Journal of Information Technology, 1(2), 26–29. https://doi.org/10.46229/jifotech.v1i2.282

Sari, F. V., & Wibowo, A. (2019). Analisis sentimen pelanggan toko online Jd. Id menggunakan metode Naïve Bayes Classifier berbasis konversi ikon emosi. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 10(2), 681–686. https://doi.org/10.24176/simet.v10i2.3487

Shayaa, S., Ainin, S., Jaafar, N. I., Zakaria, S. B., Phoong, S. W., Yeong, W. C., Al- Garadi, M. A., Muhammad, A., & Zahid Piprani, A. (2018). Linking consumer confidence index and social media sentiment analysis. Cogent Business & Management, 5(1). https://doi.org/10.1080/23311975.2018.1509424

Shukla, X. U., & Parmar, D. J. (2016). Python – A comprehensive yet free programming language for statisticians. Journal of Statistics and Management Systems, 19(2), 277–284. https://doi.org/10.1080/09720510.2015.1103446

Simanjuntak, T. N., & Pramana, S. (2021). Sentiment analysis on overseas tweets on the impact of COVID-19 in Indonesia. Indonesian Journal of Statistics and Its Applications, 5(2), 304–313. https://doi.org/10.29244/ijsa.v5i2p304-313

Singer, J. (2021). The Abraham Accords: Normalization Agreements signed by Israel with the U.A.E., Bahrain, Sudan, and Morocco. International Legal Materials, 60(3), 448–463. https://doi.org/DOI: 10.1017/ilm.2021.18

Srivastava, A., Singh, V., & Drall, G. S. (2019). Sentiment analysis of twitter data: A hybrid approach. International Journal of Healthcare Information Systems and Informatics (IJHISI), 14(2), 1–16. https://doi.org/10.4018/ijhisi.2019040101

Syarief, F. (2017). Pemanfaatan media sosial dalam proses pembentukan opini publik (analisa wacana Twitter SBY). Jurnal Komunikasi, 8(3), 262–266. https://doi.org/10.31294/jkom.v8i3.3092

Takefuji, Y. (2021). Python programming in PyPI for translational medicine. International Journal of Translational Medicine, 1(3), 323–331. https://doi.org/10.3390/ijtm1030019

Thakur, K., & Kumar, V. (2022). Application of text mining techniques on scholarly research articles: Methods and tools. New Review of Academic Librarianship, 28(3), 279–302. https://doi.org/10.1080/13614533.2021.1918190

The Editors of Encyclopedia Britannica. (2022). Arab-Israeli wars. Encyclopedia Britannica. https://www.britannica.com/event/Arab-Israeli-wars

US State Department. (2020). The abraham accords. The United States Government. https://www.state.gov/the-abraham-accords/

Wirawan, M. K. (2020). Israel-UEA jalin kembali hubungan diplomatik, ini respon beberapa negara. Kompas. https://www.kompas.com/global/read/2020/08/14/144524370/israel-uea-jalin-kembali-hubungan-diplomatik-ini-respons-beberapa-negara?page=all

Xu, Z., & Guo, H. (2018). Using text mining to compare online pro- and anti-vaccine headlines: Word usage, sentiments, and online popularity. Communication Studies, 69(1), 103–122. https://doi.org/10.1080/10510974.2017.1414068

Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current state of text sentiment analysis from opinion to emotion mining. ACM Computing Surveys (CSUR), 50(2), 1–33.

Yanti, R. M., Santoso, I., & Suadaa, L. H. (2021). Application of named entity recognition via Twitter on SpaCy in Indonesian (case study: Power failure in the Special Region of Yogyakarta). Indonesian Journal of Information Systems, 4(1), 76–86.

https://doi.org/10.24002/ijis.v4i1.4677

Zain, N. R. M. (2014). Agenda Setting Theory.




DOI: https://doi.org/10.24815/jkg.v11i2.26697

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Komunikasi Global (JKG)
Program Studi Ilmu Komunikasi, Fakultas Ilmu Sosial dan Ilmu Politik, Universitas Syiah Kuala
Jln. Tgk. Tanoh Abee, Darussalam, Banda Aceh, 23111
Telp.  (0651) 7555267
Email: jkg@usk.ac.id

 

Published by:

 

Indexed by: