Fitrah Asma Ulhusna, Adi Winarto, Tutik Wresdiyati


The aim of this research was to analyze the profile of superoxide dismutase (SOD) and malondialdehyde (MDA) on the liver tissue of hypercholesterolemic rats which were given Holothuria nobilis polysaccharides (HNP). A total of 15 male rats strain Sprague Dawley were divided into prevention and curative groups. Prevention group consisted of negative/non-hypercholesterolemic group (K-), positive/hypercholesterolemic group (K+), and hypercholesterolemic prevention group which were given 1% cholesterol diet and HNP at dose of 400 mg/kg bw (PCh). The treatments were given for 28 days. The curative group was consisted of the hypercholesterolemic group, which was given 1% cholesterol diet for 28 days, then followed by standard diet for 28 days (Ch), and the hypercholesterolemia curative group which was given 1% cholesterol diet for 28 days, then followed by 400 mg/kg bw HNP for 28 days (ChP). The antioxidant activity of HNP was analyzed by DPPH method. At the end of study the liver tissue was collected and analyzed for MDA, SOD while Cu,Zn-SOD was analyzed by immunohistochemical technique. The results showed that the antioxidant activity of HNP was weak. The MDA level (µg/g) in K-, K+, PCh, Ch, and ChP groups were 1.19±0.6; 3.37±0.79; 0.29±0.14; 9.11±0.72; and 3.14±1.06, respectively. The SOD activities (U/g) in K-, K+, PCh, Ch, and ChP groups were 2141.11±83.88; 1541±211.69; 2096.67±166.66; 1063.33±88.19; 1685.55±167.77, respectively. The immuno reactivity of Cu,Zn-SOD showed that HNP could increase Cu,Zn-SOD in the liver tissues of both groups. This study concluded that the HNP increased SOD activity, Cu,Zn-SOD antioxidant content, and decreased MDA levels in the liver tissues of hypercholesterolemic rats in both preventive and curative groups.


Hypercholesterolemic; liver; malondialdehyde; polysaccharides; superoxida dismutase

Full Text:



[RISKESDA] Riset Kesehatan Dasar. 2013. BADAN Penelitian dan Pengembangan Kesehatan. Kementrian Kesehatan Republik Indonesia.

Chedea V.S. and R.M Pop. 2018. Total Polyphenols Content and Antioxidant DPPH Assays on Biological Samples. In Polyphenols in Plants. Watson R . 2nd ed. Academic Press, London.

Dong, A, J. Shen, M.B. Zeng, P.A. Campochiaro. 2011. Vascular cell-adhesion molecule-1 plays a central role in the proangiogenic effects of oxidative stress. PNAS. 108(35):14614-9.

Elahi, M.M., Y.X. Kong, B.M. Matata. 2009. Oxidative stress as a mediator of cardiovascular disease. Oxidative Medicine and Cellular. 2: 259–269.

Ervina M, Y.E. Nawu, S.Y. Esar. 2016. Comparison of in vitro antioxidant activity of infusion, extract and fractions of Indonesian Cinnamon (Cinnamomum burmannii) bark. IFRJ. 23(3):1346-1350

Evans, R.M., G.D. Barish, Y.X. Wang. 2004. PPARs and the complex journey to obesity. Nat. Med. 10: 355-361

Fitton J.H., D.N. Stringer, S.S. Karpiniec. 2015. Therapies from fucoidan: an update. Mar. Drugs. 13:5920-5946.

Gunness, P., M.J. Gidley. 2010. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 39: 149-155

Hervas, S.M. and J.F. Ascaco. 2018. Hypercholesterolemia. In Encyclopedia Endocrin Disease. Huhtaniemi I and Martini L. 2nd Ed. Academic Press, London.

Kaplan, M. and M. Aviram. 2000. Macrophage plasma membrane chondroitin sulfate proteoglycan bind oxidized low-density lipoprotein. Atherosclerosis. 149: 5–17.

Kiew, P. L., M.M. Don. 2012. Jewel of the seabed: sea cucumbers as nutritional and drug candidates. International Journal of Food Sciences and Nutrition. 63(5): 616-636.

Li, K.C., R.E. Xing, S. Liu, R.F. Li, Y.K. Qin, X.T. Meng. 2012. Separation of chitooligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydrate Polymers. 88:896-903.

Li, S., Z. Zhia, Y. Hu, J. Ge, X. Ye, D. Tiang, R.J. Linhardt, S. Chen. 2017. 4-O-Sulfation in sea cucumber fucodians contribute to reversing dyslipidiaemia caused by HFD. International Journal of Biological Macromolecule. 99:96-104

Liu, H.H., W.C. Ko, M.L. Hu. 2002. Hypolipidemic effect of glycosaminoglycansfrom the sea cucumber Metriatyla scabra in rats fed acholesterol-supplemented diet. Journal of Agricultural and Food Chemistry. 50(12): 3602–3606.

Liu, X., Z. Sun, M. Zhang, X. Meng, X. Xia, W. Yuan. 2012. Antioxidant andantihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicas. Carbohydrate Polymers. 90(4): 1664–1670.

Ma, M., G.H. Liu, Z.H. Yu, G. Chen, X. Zhang. 2009. Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stres of mice fed high-fat diet in vivo. Food Chemistry. 113:872-877.

Maskar, D.H, Hardinsyah. E. Damayanti, M. Astawan., T. Wresdiyati. 2015. Pengaruh Kedelai Produk Rekayasa Genetik Terhadap Kadar Malonaldehid, Aktivitas Superoksida Dismutase Dan Profil Darah Pada Tikus Percobaan. Penelitian Gizi dan Makanan. 38 (1): 41-50

Matsuzawa-Nagata, N., T. Takamura, Ando, S. Nakamura. 2008. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistanceand obesity. Metabolism. 57:1071-1077.

Mestechkina, N.M., V.D. Shcherbukhin. 2010. Sulfated polysaccharides and their anticoagulant activity: a review. Applied Biochemistry and Microbiology. 46: 267-273.

Molyneax P. 2004. The use of the stable free radical dyhenylpicrylhydrazil (DPPH) for estimating antioxidant activity. Journal of Science Technology. 26(2):211-219

Prakash A., F. Rigelhof, E. Miller. 2001. Antioxidant activity. Medallions Labs. 19(2):1-4.

Prasetiawan E., I.K.M. Adnyane, T. Wresdiyati. 2017. The Anti-Oxidant Activities of Ethanol Extract Of Mahogany (Sweitenia mahagoni Jacq.) Seeds In The Liver Tissues of Diabetic Experimental Rats. Jurnal Kedokteran Hewan. 11(2):57-61.

Qi, H.M., Q.B. Zhang, T.T. Zhao, R. Chen, H. Zhang, X.Z. Niu. 2005. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macro Molecules. 37: 195–199.

Qi, H. M., L.Y. Huang, X.L. Liu, D.M Liu, Q.B. Zhang, S.M. Liu, S. M. 2012. Antihyperlipidemic activity of high sulfate content derivative ofpolysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydrate Polymers. 87(2): 1637–1640.

Qi H., X. Ji, S. Liu, D. FenG, X. Dong, B. He, J. Srinivas, C. Yu. 2017. Antioxidant and antidyslipidemic effects of polysaccharidic extract from sea cucumber processing liquor. Electronic Journal of Biotechnology. 28:1-6.

Riessen, R., D.I. Axel, M. Fenchel, U.U. Herzog, K.K. Karsch. 1999. Effect of HMG-CoA reductase inhibition on extracellular expression in human vascular smooth muscles cells. Basic Research in Cardiology. 94: 322–332.

Scheuer H., W. Gwinner, J. Hoohbach, E.F. Grone, R.P. Brandes, E. Malle, C.J. Olbricht, A.K. Walli, H.J. Grone. 2000. Oxidant stress in hyperlipidemia-induced renal damage. Am J Physiol Renal Physiol 278:F63-74.

Sathivel, A., H.R. Raghavendran, P. Srinivasan, T. Devaki. 2008. Antiperoxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on galactosamine induced hepatitis in rats. Food and Chemical Toxicology. 46(10): 3262-3267.

Shi, L. 2016. Bioactivities: isolation and purification methods of polysaccharidesfrom natural products: a review. International Journal of Biological Macromolecules. 92:37-48.

Suarsana, I.N., T. Wresdiyati, A. Suprayogi. 2013. Respon Stres Oksidatif dan Pemberian Isoflavon Terhadap Aktivitas EnzimSuperoksida Dismutase dan Peroksidasi Lipid pada Hati Tikus. JITV. 18(2): 146-152

Sun H.H, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH. 2009. Isolation chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers. 78:117-124.

Surinrut P, S. Kaewsutthi, R. Surakarnkul. 2005. Radical scavenging activity in fruit extracts. Acta Horticultura. 5:201-203.

Tang, Z. H., H.C. Gao, S. Wang, S.H. Wen, S. Qin. 2013. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorphaprolifera. International Journal of Biological Macromolecules. 58:186-189.

Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic, M. Mazur. 2006. Free radicals, metals and antioxidant in oxidative stress-induced cancer. Chemico Biological Interaction. 160(1):1-40.

Wang, Y.M., Z.N. Li, X.Z. Niu, H. Zhang, Q.B. Zhang. 2003. A preliminarystudy on antilipemic activity of polysaccharides from Ulva pertusa in mice. Chinese Journal of Marine Drugs. 22: 33–35.

Wang, Y., W. Su, C. Zhang, C. Xue, Y. Chang, X. Wu, J. Wang. 2012. Protective effect of sea cucumber (Acaudina molpadioides) fucoidan against ethanol-induced gastric damage. Food Chemistry. 133:1414–1419.

World Health Organization. 2013. World health statistic 2013.

Woudberg, N.J., J.H. Goedecke, S. Lecour. 2016. Protection from cardiovascular disease due to increased high-density lipoprotein cholesterol in african black populations. Ethn Dis. 26(4): 553–560

Wresdiyati, T., M. Astawan, V.D. Nurwati. 2006a. Level Antioksidan Superoksida Dismutase (SOD) Menurun pada Jaringan Ginjal Tikus Hiperkolesterolemia: Suatu Kajian Imunohistokimia. J. Sain Vet. 24:2.

Wresdiyati, T., M. Astawan, L.Y. Hastanti. 2006b.

The Immunohistochemical Profile of Superoxide Dismutase (SOD) in the Liver Tissue of Hypercholesterolemic Rats. Hayati. 13:85-89

Wresdiyati, T., A.B. Hartanto, M. Astawan. 2008. The Effect of Seaweed Eucheuma cottoni on Superoxide Dismutase (SOD) Liver of Hypercholeterolemic Rats. Hayati. 15(3):105-110.

Wresdiyati, T., A. Karmila, M. Astawan, R. Karmila. 2014. Teripang pasir meningkatkan kandungan antioksidan superoksida dismutase pada pankreas tikus diabetes. J. Vet. 16(1):145-151.

Wu, N., Z. Yu, X. Ye, Y. Hu, D. Tian, S. Chen. 2016. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate. Carbohydrate Polymers. 147: 1-7.

Xi, C., R. Zhang, Z. Wen. 2018. Bioactive compounds and biological functions of sea cucumbers as potential functional foods. Journal of Functional Foods. 49: 73–84

Xu, N., Z.Z. Ren, J.J. Zhang, X.L. Song, Z. Gao, H.J. Jing. 2017. Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotuseryngii var. tuoliensis. International Journal of Biological Macromolecules. 95:204-214.

Yan, B., L. Li, Y.H. Yi. 2004. Biological activities of the polysaccharides from the sea cucumber. Journal of Pharmaceutical Practice. 22:101-103.

Yu, P. Z., N. Liu, X.G. Liu, G.F. Zhou, Q.B. Zhang, P.C. Li. 2003. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacological Research,48(6): 543-549.

Zhang, W., J.L. Zhang, Q.W. Jiang, W.S. Xia. 2013. The hypolipidemic activity ofchitosan nanopowder prepared by ultrafine milling. Carbohydrate Polymers. 95:487-491.

Zhao, H., S. Li, J. Zhang, G. Che, M. Zhou, M. Liu,C. Zhang, N. Xub, L. Linb, Y. Liua, L. Jiab. 2016. The antihyperlipidemic activities of enzymatic and acidic intracellularpolysaccharides by Termitomyces albuminosus. Carbohydrate Polymers. 51: 1227-1234

Zheng, L., G. Zhai, J. Zhang, L. Wang, Z. Ma, M. Jia, L. Jia. 2014. Antihyperlipidemic and hepatoprotective activities of mycelia zinc polysaccharide from Pholiota nameko SW-02. International Journal of Biological Macromolecules. 70: 523-529.

Zhu, B.W., D.Y. Zhou, T. Li, S. Yan, J.F. Yang, D.M. Li. 2010. Chemical composition and free radical scavenging activities of a sulphated polysaccharide extracted from abalone gonad (Haliotis discus Hannai Ino). Food Chemistry. 121:712-718.

Zou, S., P. Rujia, D. Xiaodi, H. Meilin, W. Changhai. 2016. Physicochemical properties and antioxidant activities of two fucosylated chondroitin sulfate from sea cucumber Acaudina molpadioidea and Holothuria nobilis. Process Biochemistry. 16:30021-3002


Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Copyright (c) 2020 by author and J. Kedokt. Hewan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by:


p-ISSN: 1978-225X e-ISSN: 2502-5600 Copyright© 2007-2021