Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat

Zilvanhisna Emka Fitri, Rizkiyah Rizkiyah, Abdul Madjid, Arizal Mujibtamala Nanda Imron

Abstract


The decrease in quality and productivity of tomatoes is caused by high rainfall, bad weather and cultivation so that the tomatoes become rotten, cracked, and spotting occurs. The government is trying to provide training to improve the quality of tomatoes for farmers. However, the training was not effective so the researchers helped create a system that was able to educate farmers in the classification of damage to tomato quality. This system serves to facilitate farmers in recognizing tomato damage thereby reducing the risk of crop failure. In this study, the classification method used is backpropagation with 7 input parameters. The input consists of morphological and texture features. The output of this classification system consists of 3 classes are blossom end rot, fruit cracking and fruit spots caused by bacterial specks. The best accuracy level of the system in classifying tomato quality damage in the training process is 89.04% and testing is 81.11%.


Keywords


tomatoes; GLCM; backpropagation

Full Text:

PDF

References


C. Wasonowati, “Meningkatkan Pertumbuhan Tanaman Tomat (Lycopersicon esculentum) dengan Sistem Budidaya Hidroponik,” AGROVIGOR, vol. 4, p. 8, 2011.

Kementrian Pertanian, "Statistik Produksi Hortikultura Tahun 2014", Direktorat Jenderal Hortikultura, Kementrian Pertanian, 2015.

Direktorat Jendral Hortikultura, “Produksi Tomat 2014-2018, ”Kementerian Pertanian Republik Indonesia, 2019.

L. Prabaningrum, T. K. Moekasan, W. Adiyoga, and H. de Putter, Panduan Praktis Budidaya Tomat : Berdasarkan Konsepsi Pengendalian Hama Terpadu (PHT). Lembang: Balai Penelitian Tanaman Sayuran, 2014.

M. H. Noor and M. Hariadi, “IMAGE CLUSTER BERDASARKAN WARNA UNTUK IDENTIFIKASI KEMATANGAN BUAH TOMAT DENGAN METODE VALLEY TRACING,” p. 10, 2009.

R. H. Amalia, “Identifkasi Citra Hama Tanaman Tomat Menggunakan Gray Level Co-Occurrence Matrix dan Klasifkasi Probalistic Neural Network,” Institut Pertanian Bogor, Bogor, 2013.

A. Hidayattullah and A. Suyantohadi, “Identifkasi Tingkat Kematangan Buah Tomat (Lycopersicon esculentum Mill) Menggunakan Metode Pengolahan Citra dan Jaringan Syaraf Tiruan,” Skripsi, Universitas Gadjah Mada, Yogyakarta, 2013.

B. Destyningtias, S. Heranurweni, and N. T., “Segmentasi Citra dengan Metode Pengambangan,” J. Elektr., vol. 2, pp. 39–49, 2010.




DOI: https://doi.org/10.17529/jre.v16i1.15535

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


View My Stats

 

Creative Commons License

Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.