Sistem Monitoring Kolesterol Melalui Iris Mata dengan Metode Pengolahan Citra

Abdul Fadlil, Wahyu Sapto Aji, Arief Setyo Nugroho

Abstract


Early detection to determine the presence or absence of cholesterol in the body is a necessity for everyone who wants to live healthy. Many diseases can be caused by the  presence of cholesterol such as heart disease, stroke, nerve disorders, kidney problems, hypertension, and etc. Therefore, cholesterol detection must be done regularly. This study discusses about the cholesterol detection system through the iris eyes using image processing and monitoring progress in continously. Detection of cholesterol can be observed with Arcus Senilis or a gray ring in the iris eyes. Tests carried using 15 samples which cholesterol identifed. The process of image processing consists of image acquisition, sharpening, segmentation, convert grayscale and binary images. Cholesterol can be identify with difference between pixel values 0 (black) and pixel values 1 (white) in binary images. Research data will be stored in an Excel format database with adding some user data. From the test, results analysis carried the try and error threshold method using values of 80, 100, 150, and getting an accuracy of 87%, 73%, and 33%. Besides, monitoring cholesterol can be carried using a system interface and database with adding the required data and can display it on excel.


Keywords


cholesterol; iris; sharpening; grayscale; binary image; arcus senilis; excel database

Full Text:

PDF

References


B. Sofiandi, J. Raharjo, and K. Usman, “Identifikasi Pola Citra Iris Mata Untuk Mendeteksi Kelebihan Kadar Kolesterol Menggunakan Metode Gray Level Co-Occurrence Matrix (GLCM) da Decision Tree,” e-Proceeding Eng., vol. 6, no. 3, pp. 10242–10249, 2019.

R. A. Ramlee, K. A. Aziz, S. Ranjit, M. Esro, and U. Teknikal, “Automated Detecting Arcus Senilis , Symptom for Cholesterol Presence Using Iris Recognition Algorithm,” J. Telecommun. Electron. Comput. Eng., vol. 3, no. 2, pp. 29–39, 2011.

E. Ongko, “Perancangan Sistem Pakar Diagnosa Penyakit pada Mata,” J. TIME, vol. 2, no. 2, pp. 10–17, 2013.

A. K. Dewi, A. Novianty, and T. W. Purboyo, “Deteksi Gangguan Pada Organ Lambung Melalui Citra Iris Mata Dengan Menggunakan Metode Jaringan Syaraf Tiruan BackPropagation,” e-Proceeding Eng., vol. 3, no. 1, pp. 681–688, 2016.

M. Rosmiati and S. Siregar, “Deteksi penyakit melalui iris mata menggunakan watershed algorhytm dengan simulasi matlab,” in Seminar Nasional Teknologi Informasi dan Multimedia, 2015, pp. 6–8.

M. A. S. Tawas, M. D. Kalangi, and R. Rotikan, “Segmentasi Iris Mata Penderita Penyakit Ginjal Dengan Metode Hough Transform Dan Integro-Differential Operator,” Cogito Smart J., vol. 3, no. 1, pp. 100–110, 2017.

R. Anugrah and A. Kusdaryono, “Sistem Pendukung Diagnosa Iridologi dengan Menggunakn Pengolahan Citra Digital Untuk Rekomendasi Terapi Bekam,” IPSIKOM, vol. 4, no. 1, pp. 1–13, 2016.

A. Saputra, W. Broto, and L. B. R, “Deteksi Kadar Kolesterol Melalui Iris Mata Menggunakan Image Processing Dengan Metode Jaringan Syaraf Tiruan dan Gray Level Co-Occurrence Matrix (GLCM),” Semin. Nas. Fis., vol. VI, pp. 65–74, 2017.

H. A. D. Rani and E. Supriyati, “Deteksi iris mata untuk menentukan kelebihan kolesterol menggunakan ekstraksi ciri,” SNATIF, pp. 287–292, 2014.

K. G. Adi, P. V Rao, and V. K. Adi, “Analysis and Detection of Cholesterol by Wavelets based and ANN Classification,” Procedia Mater. Sci., vol. 10, no. Cnt 2014, pp. 409–418, 2015.

V. Bhangdiya, “Cholesterol Presence Detection Using Iris Recognition,” Int. J. Technol. Sci., vol. 1, no. 1, pp. 22–25, 2014.

C. A. Nurbani, L. Novamizanti, I. N. A. N. Ramatryana, N. Putu, D. Prameiswari, and A. Cholesterol, “Measurement of Cholesterol Levels through Eye based on Co-Occurrence Matrix on Android,” in Asia Pacific Conference on Wireless and Mobile, 2019, pp. 88–93.

D. H. Yohandy, I. M. N. Wiranata, and T. Q. Ferbia, “Identifikasi Pola Penyakit pada Citra Iris Mata dengan RBF Neural Network,” J. Inform., vol. 5, no. 2, pp. 195–201, 2018.

H. T. Sihotang, “Sistem Pakar Mendiagnosa Penyakit Kolesterol Pada Remaja dengan Metode Certainty Factor (CF) Berbasis Web,” J. Mantik Penusa, vol. 15, no. 1, pp. 16–23, 2014.

L. S. Tegar and J. Utama, “Rancang Bangun Sistem Informasi Lahan Parkir Kendaraan Roda Empat di Unikom Berbasis Image Processing Designed Build Information System in Unikom Four-Wheeled Parking Lot based on Image Processing,” TELEKONTRAN, vol. 4, no. 1, pp. 27–33, 2016.

H. A. Siregar, “Implementasi Metode Sharpenning Untuk Memperbaiki Kualitas Citra,” J. Pelita Inform., vol. 18, no. 3, pp. 344–347, 2019.

D. Sundani, S. Widiastuti, and D. A. R, “Aplikasi Penajaman Citra (Image Sharpening Berdasarkan Prinsip Kuantum,” in Seminar Nasional Aplikasi Sains & Teknologi, 2014, pp. 201–206.

F. Muwardi and A. Fadlil, “Sistem Pengenalan Bunga Berbasi Pengolahan Citra dan Pengklasifikasi Jarak,” J. Ilmu Tek. Elektro Komput. dan Inform., vol. 3, no. 2, pp. 124–131, 2017.

M. R. Kumaseh, L. Latumakulita, and N. Nainggolan, “Segmentasi Citra Digital Ikan Menggunakan Metode Thresholding,” J. Ilm. Sains, vol. 13, no. 1, pp. 74–79, 2013.

A. T. Hashim and D. A. Noori, “An Approach of Noisy Color Iris Segmentation Based on Hybrid Image Processing Techniques,” in International Conference on Cyberworlds, 2016, pp. 183–188.




DOI: https://doi.org/10.17529/jre.v16i1.15657

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


View My Stats

 

Creative Commons License

Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.