Pengenalan Pola Berbasis OCR untuk Pengambilan Data Bursa Saham
Abstract
The investor must be able to use instinct to evaluate when to sell and buy stocks. This is, of fact, a weakness for inexperienced investors, in addition to the decision's inaccuracy and the time it takes to evaluate a slew of ineffective results. So that, a support system is needed to help the investors make decisions in buying and selling shares. This support system creates an online analysis curve display through text data in the BEI stock price application. The data processing based on pattern recognition will be carried out so that a buying and selling decision can be made to calculate the profit and loss by investors. As the first step of the whole system, this research has built an image-to-text conversion system based on OCR (Optical Character Recognition) that can convert the non-editable text (.jpg) to be editable (.text) online. After obtaining this .text data, the will used the system in further research to analyze stock buying and selling decisions. According to research on eight companies, the OCR-based image to text conversion has a 96.8% accuracy rate. Meanwhile, using Droid serif, Takao PGhotic, and Waree fonts at 12pt font sizes, it has 100 percent accuracy in Libre Office.
Keywords
Full Text:
PDFReferences
A. Chaudhuri, K. Mandaviya, P. Badelia, and S. K Ghosh, Optical Character Recognition Systems for Differe
nt Languages with Soft Computing, vol. 352, no. December. 2017.
M. K. Sahu and N. K. Dewangan, “Handwritten Character Recognition using Neural Network,” IJARCCE, vol. 6, no. 6, pp. 11–14, Jun. 2017, doi: 10.17148/IJARCCE.2017.6603.
C. Patel, D. Shah, and A. Patel, “Automatic Number Plate Recognition System (ANPR): A Survey,” Int. J. Comput. Appl., vol. 69, no. 9, pp. 21–33, 2013, doi: 10.5120/11871-7665.
N. F. Gazcón, C. I. Chesñevar, and S. M. Castro, “Automatic vehicle identification for Argentinean license plates using intelligent template matching,” Pattern Recognit. Lett., vol. 33, no. 9, pp. 1066–1074, Jul. 2012, doi: 10.1016/j.patrec.2012.02.004.
R. P. . Persada, S. Aulia, B. D., and S. H., “Automatic face and VLP’s recognition for smart parking system,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 4, p. 1698, Aug. 2019, doi: 10.12928/telkomnika.v17i4.11746.
S. Sugar, Lawade, S. Gayatri, Hedau, A. C, and Rangirwar, “Fake Currency Detection Using Image Processing and Other Standard Methods,” Int. J. Res. Sci. Eng., vol. 1, no. 1, pp. 128–131, 2014.
N. Sahu and M. Sonkusare, “A Study on Optical Character Recognition Techniques,” Int. J. Comput. Sci. Inf. Technol. Control Eng., vol. 4, no. 1, pp. 01–15, 2017, doi: 10.5121/ijcsitce.2017.4101.
A. J. I. George and F. Gafoor, “Contourlet Transform Based Feature Extraction for Handwritten Malayalam Character Recognition using Neutral Network,” Int. J. Ind. Electron. Electr. Eng., vol. 2, no. 4, pp. 19–22, 2014.
G. Mathur and M. S. Rikhari, “Text Detection in Document Images: Highlight on using FAST algorithm,” Int. J. Adv. Eng. Res. Sci., vol. 4, no. 3, pp. 275–284, 2017, doi: 10.22161/ijaers.4.3.43.
M. Sonkusare and N. Sahu, “A Survey on Handwritten Character Recognition (HCR) Techniques for English Alphabets,” Adv. Vis. Comput. An Int. J., vol. 3, no. 1, pp. 1–12, Mar. 2016, doi: 10.5121/avc.2016.3101.
V. L. Sahu and B. Kubde, “Offline Handwritten Character Recognition Techniques using Neural Network : A Review,” Int. J. Sci. Eng. Res., vol. 1, no. 1–3, pp. 87–94, 2013, [Online]. Available: www.ijser.in.
S. Singh, “Optical Character Recognition Techniques: A survey,” Int. J. Adv. Res. Comput. Eng. Technol., vol. 2, no. 6, pp. 2009–2015, 2013, [Online]. Available: http://ijarcet.org/wp-content/uploads/VOLUME-2-ISSUE-6-2009-2015.pdf.
M. Anif et al., “Pengembangan Aplikasi Text Recognition Dengan Klasifikasi Neural Network pada huruf Hijaiyah Gundul,” BIT, vol. 10, no. 1, pp. 59–67, 2013.
S. Das and S. Banerjee, “An Algorithm for Japanese Character Recognition,” Int. J. Image, Graph. Signal Process., vol. 7, no. 1, pp. 9–15, Dec. 2014, doi: 10.5815/ijigsp.2015.01.02.
S. R. Zanwar, U. B. Shinde, A. S. Narote, and S. P. Narote, “A comprehensive survey on soft computing based optical character recognition techniques,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 978–987, 2019.
K. Dholakia, “A Survey on Handwritten Character Recognition Techniques for Various Indian Languages,” Int. J. Comput. Appl., vol. 115, no. 1, pp. 17–21, 2015, doi: 10.5120/20114-2159.
U. Pal, R. Jayadevan, and N. Sharma, “Handwriting recognition in indian regional scripts: A survey of offline techniques,” ACM Trans. Asian Lang. Inf. Process., vol. 11, no. 1, 2012, doi: 10.1145/2090176.2090177.
S. IMPEDOVO, L. OTTAVIANO, and S. OCCHINEGRO, “OPTICAL CHARACTER RECOGNITION — A SURVEY,” J. Emerg. Trends Comput. Inf. Sci., vol. 4, no. 6, pp. 545–550, Jun. 2013, doi: 10.1142/S0218001491000041.
O. L. and I. O., “Optical Character Recognition as a Cloud Service in Azure Architecture,” Int. J. Comput. Appl., vol. 146, no. 13, pp. 14–20, 2016, doi: 10.5120/ijca2016910898.
M. L. S. A.S., A. B. Prasetijo, and M. Somantri, “Pendeteksi Sinyal Jual/Beli Saham dengan Fuzzy Rule-Based Evidential Reasoning dan C-means Clustering,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 7, no. 3, Sep. 2018, doi: 10.22146/jnteti.v7i3.437.
I. A. Doush and A. M. Al Trad, “Improving post-processing optical character recognition documents with Arabic language using spelling error detection and correction,” Int. J. Reason. Intell. Syst., vol. 8, no. 3/4, p. 91, 2016, doi: 10.1504/IJRIS.2016.082957.
R. Siregar, “Implementasi OTSU Thresholding pada Optical Character Recognition Menggunakan Engine Tesseract,” J. Ilm. Core It, vol. 7, no. 1, pp. 27–34, 2019.
G. Andersson and J. Isaksen, “Best practices in capacity building in public finance management in Africa: Experiences of NORAD and SIDA,” Rep. - Chr. Michelsen Inst., vol. 8, no. 16, pp. 1–53, 2002.
R. R. Chakravarthi and E. Chandra, “Digital Signature Representation Using SOM Method in OCR Technique,” Int. J. Latest Eng. Manag. Res., vol. 02, no. 08, pp. 1–11, 2017.
C. Patel, A. Patel, and D. Patel, “Optical character recognition by open source OCR tool tesseract: A case study,” Int. J. Comput. Appl., vol. 55, no. 10, pp. 50–56, 2012, doi: 10.5120/8794-2784.
C. Pratama, S. Aulia, D. N. Ramadan, and S. Hadiyoso, “Vehicle license plate detection for parking offenders using automatic license-plate recognition,” J. Southwest Jiaotong Univ., vol. 55, no. 4, 2020.
M. U. Niam, S. Aulia, B. Dirgantoro, and S. Hadiyoso, “System development for sale and buy execution in stock trading using knowledge-based system,” Int. J. Emerg. Technol., vol. 12, no. 1, pp. 6, 2021.
DOI: https://doi.org/10.17529/jre.v17i2.19656
Article Metrics
Abstract view : 16 timesPDF - 5 times
Refbacks
- There are currently no refbacks.
View My Stats
Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.




