Abnormal ECG Classification using Empirical Mode Decomposition and Entropy
Abstract
Keywords
Full Text:
PDFReferences
R. J. Martis, U. R. Acharya, and L. C. Min, “ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform,” Biomed. Signal Process. Control, vol. 8, no. 5, pp. 437–448, Sep. 2013, doi: 10.1016/j.bspc.2013.01.005.
M. Kaur and A. S. Arora, “Classification of ECG signals using LDA with factor analysis method as feature reduction technique,” J. Med. Eng. Technol., vol. 36, no. 8, pp. 411–420, Nov. 2012, doi: 10.3109/03091902.2012.702851.
A. R. Duraes, L. C. Santana Passos, H. C. de Souza Falcon, V. Ribeiro Marques, M. F. da Silva Medeiros, and J. de C. Solano Martins, “Bundle Branch Block: Right and Left Prognosis Implications,” Interv. Cardiol. J., vol. 02, no. 01, pp. 1–6, 2016, doi: 10.21767/2471-8157.100016.
M. M. Søndergaard et al., “Associations between left bundle branch block with different PR intervals, QRS durations, heart rates and the risk of heart failure: a register-based cohort study using ECG data from the primary care setting,” Open Hear., vol. 8, no. 1, p. e001425, Feb. 2021, doi: 10.1136/openhrt-2020-001425.
N. Y. Tan, C. M. Witt, J. K. Oh, and Y.-M. Cha, “Left Bundle Branch Block,” Circ. Arrhythmia Electrophysiol., vol. 13, no. 4, pp. 364–377, Apr. 2020, doi: 10.1161/CIRCEP.119.008239.
A. Liberati et al., “Enhanced Reader.pdf,” Nature, vol. 388. pp. 539–547, 2018.
H. Hasebe, “A Patient with Left Bundle Branch Block and Persistent Atrial Fibrillation Treated with Cardiac Catheter Ablation and Pharmacologic Cardiac Resynchronization Therapy without the Use of an Implantable Cardiac Device,” Am. J. Case Rep., vol. 19, pp. 123-127oke, Feb. 2018, doi: 10.12659/AJCR.907268.
D. Gurzău et al., “Major Left Bundle Branch Block and Coronary Heart Disease—Are There Any Differences between the Sexes?,” J. Clin. Med., vol. 10, no. 11, p. 2284, May 2021, doi: 10.3390/jcm10112284.
C. Gutierrez and D. G. Blanchard, “Diagnosis and treatment of atrial fibrillation,” Am. Fam. Physician, vol. 94, no. 6, pp. 442–452, 2016.
R. Sharma, R. Pachori, and U. Acharya, “Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals,” Entropy, vol. 17, no. 2, pp. 669–691, Feb. 2015, doi: 10.3390/e17020669.
S. Sahoo, M. Mohanty, S. Behera, and S. K. Sabut, “ECG beat classification using empirical mode decomposition and mixture of features,” J. Med. Eng. Technol., vol. 41, no. 8, pp. 652–661, Nov. 2017, doi: 10.1080/03091902.2017.1394386.
A. Holzinger et al., “On Entropy-Based Data Mining,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8401, 2014, pp. 209–226.
M. U. Ahmed, T. Chanwimalueang, S. Thayyil, and D. P. Mandic, “A multi variate multiscale fuzzy entropy algorithm with application to uterine EMG complexity analysis,” Entropy, vol. 19, no. 1, pp. 1–18, 2017, doi: 10.3390/e19010002.
S. Siuly, V. Bajaj, A. Sengur, and Y. Zhang, “An Advanced Analysis System for Identifying Alcoholic Brain State Through EEG Signals,” Int. J. Autom. Comput., vol. 16, no. 6, pp. 737–747, Dec. 2019, doi: 10.1007/s11633-019-1178-7.
M. Pelc, Y. Khoma, and V. Khoma, “ECG Signal as Robust and Reliable Biometric Marker: Datasets and Algorithms Comparison,” Sensors, vol. 19, no. 10, p. 2350, May 2019, doi: 10.3390/s19102350.
P. Durongbhan et al., “A dementia classification framework using frequency and time-frequency features based on EEG signals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 5, pp. 826–835, 2019, doi: 10.1109/TNSRE.2019.2909100.
Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang, “Efficient kNN classification algorithm for big data,” Neurocomputing, vol. 195, pp. 143–148, 2016, doi: 10.1016/j.neucom.2015.08.112.
S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, “Learning k for kNN Classification,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 3, pp. 1–19, 2017, doi: 10.1145/2990508.
R. Sm�ek et al., “SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation,” in Computing in Cardiology, Sep. 2017, vol. 44, pp. 1–4, doi: 10.22489/CinC.2017.172-200.
N. Ramadhani, S. Aulia, E. Suhartono, and S. Hadiyoso, “Deteksi Kantuk pada Pengemudi Berdasarkan Penginderaan Wajah Menggunakan PCA dan SVM,” J. Rekayasa Elektr., vol. 17, no. 2, Jun. 2021, doi: 10.17529/jre.v17i2.19884.
C. Venkatesan, P. Karthigaikumar, A. Paul, S. Satheeskumaran, and R. Kumar, “ECG Signal Preprocessing and SVM Classifier-Based Abnormality Detection in Remote Healthcare Applications,” IEEE Access, vol. 6, pp. 9767–9773, 2018, doi: 10.1109/ACCESS.2018.2794346.
R. Smíšek, “ECG Signal Classification Based on SVM,” in Biomedical Engineering, 2016, no. 1, pp. 365–369.
A. Rizal and S. Hadiyoso, “Sample Entropy on Multidistance Signal Level Difference for Epileptic EEG Classification,” Sci. World J., vol. 2018, pp. 1–6, Sep. 2018, doi: 10.1155/2018/8463256.
H. J. Kim and J. S. Lim, “Study on a Biometric Authentication Model based on ECG using a Fuzzy Neural Network,” IOP Conf. Ser. Mater. Sci. Eng., vol. 317, no. 1, p. 012030, Mar. 2018, doi: 10.1088/1757-899X/317/1/012030.
[N. Samarin and D. Sannella, “A key to your heart: Biometric authentication based on ECG signals,” arXiv, 2019.
S. Hadiyoso, S. Aulia, and A. Rizal, “One-lead electrocardiogram for biometric authentication using time series analysis and Support Vector Machine,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 2, 2019, doi: 10.14569/ijacsa.2019.0100237.
P. Pławiak, “Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system,” Expert Syst. Appl., vol. 92, pp. 334–349, 2018, doi: 10.1016/j.eswa.2017.09.022.
A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215– e220, 2000.
G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, 2001, doi: 10.1109/51.932724.
A. Rizal, R. Hidayat, and H. A. Nugroho, “Lung Sound Classification Using Empirical Mode Decomposition and the Hjorth Descriptor,” Am. J. Appl. Sci., vol. 14, no. 1, pp. 166–173, 2017, doi: 10.3844/ajassp.2017.166.173.
S. Hadiyoso, A. Rizal, and S. Aulia, “ECG based person authentication using empirical mode decomposition and discriminant analysis,” J. Phys. Conf. Ser., vol. 1367, no. 1, 2019, doi: 10.1088/1742-6596/1367/1/012014.
A. Humeau-Heurtier, “Evaluation of Systems’ Irregularity and Complexity: Sample Entropy, Its Derivatives, and Their Applications across Scales and Disciplines,” Entropy, vol. 20, no. 10, p. 794, Oct. 2018, doi: 10.3390/e20100794.
D. Jiang and Y. Wang, “A New Entropy and Its Properties Based on the Improved Axiomatic Definition of Intuitionistic Fuzzy Entropy,” Math. Probl. Eng., vol. 2018, pp. 1–6, Sep. 2018, doi: 10.1155/2018/7606801.
M.-S. Yang and Z. Hussain, “Fuzzy Entropy for Pythagorean Fuzzy Sets with Application to Multicriterion Decision Making,” Complexity, vol. 2018, pp. 1–14, Nov. 2018, doi: 10.1155/2018/2832839.
S. Al-Sharhan, F. Karray, W. Gueaieb, and O. Basir, “Fuzzy entropy: A brief survey,” IEEE Int. Conf. Fuzzy Syst., vol. 3, pp. 1135–1139, 2001, doi: 10.1109/fuzz.2001.1008855.
G. T. Ngo, T. Q. Ngo, and D. D. Nguyen, “Image Retrieval with Relevance Feedback using SVM Active Learning,” Int. J. Electr. Comput. Eng., vol. 6, no. 6, p. 3238, Dec. 2016, doi: 10.11591/ijece.v6i6.11631.
H. Li, X. Feng, L. Cao, E. Li, H. Liang, and X. Chen, “A New ECG Signal Classification Based on WPD and ApEn Feature Extraction,” Circuits, Syst. Signal Process., vol. 35, no. 1, pp. 339–352, Jan. 2016, doi: 10.1007/s00034-015-0068-7.
B. Al Kindhi, T. A. Sardjono, and M. H. Purnomo, “Optimasi Support Vector Machine ( SVM ) untuk memprediksi adanya mutasi pada DNA Hepatitis C Virus ( HCV ),” JNTETI, vol. 7, no. Agustus, 2018.
S. Aulia, S. Hadiyoso, and D. N. Ramadan, “Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma,” J. ELKOMIKA -Teknik Elektro Itenas - ISSN 2338-8323, vol. 3, no. 1, pp. 75–90, 2015.
I. V. Yuliani and S. Aulia, “The supporting system for assessment of catwalk modeling using variable module graph method based on video,” in 2016 4th International Conference on Information and Communication Technology (ICoICT), May 2016, vol. 4, no. c, pp. 1–5, doi: 10.1109/ICoICT.2016.7571950.
J. Pinto, J. Cardoso, A. Lourenço, and C. Carreiras, “Towards a Continuous Biometric System Based on ECG Signals Acquired on the Steering Wheel,” Sensors, vol. 17, no. 10, p. 2228, Sep. 2017, doi: 10.3390/s17102228.
Z. Geler, V. Kurbalija, M. Radovanović, and M. Ivanović, “Comparison of different weighting schemes for the kNN classifier on time-series data,” Knowl. Inf. Syst., vol. 48, no. 2, pp. 331–378, 2016, doi: 10.1007/s10115-015-0881-0.
S. Siuly et al., “A New Framework for Automatic Detection of Patients With Mild Cognitive Impairment Using Resting-State EEG Signals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 9, pp. 1966–1976, Sep. 2020, doi: 10.1109/Tnsre.2020.3013429.
S. Aulia And A. Setiawan, “Menggunakan DCT , DWT , dan K- Nearest Neighbor Recognizing Handwritten Hiragana Characters Using Dct , Dwt , And K-Nearest Neighbor,” JETT, no. Juli, pp. 467–476, 2017.
A. Rizal and I. Wijayanto, “Classification of premature ventricular contraction based on ECG signal using multiorder Rényi entropy,”in Proc. Inter. Conf.of Artificial Intelligence and Infor. Tech., March 2019, pp. 225–229.
A. Rizal and S. Hadiyoso, “ECG signal classification using hjorth descriptor,” in Proc. Inter. Conf. on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Infor, Tech., Oct. 2015, pp. 3-6.
DOI: https://doi.org/10.17529/jre.v17i3.22070
Article Metrics
Abstract view : 30 timesPDF - 4 times
Refbacks
- There are currently no refbacks.
View My Stats
Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.




