Designing ANFIS Controller for MPPT on Photovoltaic System

Wahyu Setyo Pambudi, Riza Agung Firmansyah, Yuliyanto Agung Prabowo, Titiek Suheta, Fathammubina Fathammubina

Abstract


Photovoltaics’ current and voltage output characteristics depend on the intensity of solar radiation and temperature. Maximum Power Point works with maximum energy output and has the highest efficiency. The maximum energy point tracking method (MPPT) keeps the solar cell operating point at its maximum point. This study uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) method designed and used to maintain that point. The Perturb and Observe (PnO) method is used to test the results, often used in determining this tracking. Based on the test, it was found that the average power efficiency obtained was 84.79%, and using PnO was 83.87%. The transient response using ANFIS is relatively smoother than that of using PnO, which will cause chattering when there is a change in radiation and temperature.


Keywords


Photovoltaic; MPPT; ANFIS; PnO

Full Text:

PDF

References


IESR, “Indonesia Clean Energy Outlook: Tracking Progress and Review of Clean Energy Development in Indonesia,” Jakarta Inst. Essent. Serv. Reform (IESR), December 2019, pp. 1–72, 2019, [Online]. Available: www.iesr.or.id.

A. Kurniawan and E. Shintaku, “Two-step artificial neural network to estimate the solar radiation at Java Island,” Int. J. Electr. Comput. Eng., vol. 11, no. 4, pp. 3559–3566, 2021, doi: 10.11591/ijece.v11i4.pp3559-3566.

B. H. Purwoto, “Efisiensi Penggunaan Panel Surya Sebagai Sumber Energi Alternatif,” Emit. J. Tek. Elektro, vol. 18, no. 01, pp. 10–14, 2018, doi: 10.23917/emitor.v18i01.6251.

D. S. Morales, “Maximum Power Point Tracking Algorithms for Photovoltaic Applications,” AALTO University, 2010.

A. Jusoh, R. Alik, T. K. Guan, and T. Sutikno, “MPPT for PV System Based on Variable Step Size Perturb and Observe Algorithm,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 15, no. 1, p. 79, 2017, doi: 10.12928/telkomnika.v15i1.3160.

I. Yadav, S. K. Maurya, and G. K. Gupta, “A literature review on industrially accepted MPPT techniques for solar PV system,” Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp. 2117–2127, 2020, doi: 10.11591/ijece.v10i2.pp2117-2127.

Harmini and T. Nurhayati, “Aplikasi MPPT (Maximum Power Point Tracker) – Fuzzy Logic Control (FLC) Untuk Pembangkit Terdistribusi Pada Sistem On Grid PV,” 2015.

H. Suryoatmojo, F. Al Hazmi, D. C. Riawan, and R. Mardiyanto, “Desain MPPT Berbasis Kontrol Logika Fuzzy Untuk Aplikasi Pesawat Terbang Tanpa Awak Bertenaga Surya,” J. Teknol. Penerbangan, vol. 01, no. 02, pp. 40–48, 2017.

M. B. R. Widodo, A. Soeprijanto, and O. Penangsang, “Analysis of Fault Location on Distribution System Using Impulse Injection learned by ANFIS,” Proc. - 2020 Int. Semin. Intell. Technol. Its Appl. Humanification Reliab. Intell. Syst. ISITIA 2020, pp. 38–43, 2020, doi: 10.1109/ISITIA49792.2020.9163769.

F. D. M. Suyanto, O. Penangsang, D. F. U.P, A. Soeprijanto, and R. Seto, “Wind-PV Hybrid System Modeling Using Bidirectional Converter with MPPT-Dual Adaptive Neuro Fuzzy Inference System (ANFIS) in Microgrid Isolated System,” J. Eng. Appl. Sci., vol. 11, no. 11, pp. 2353–2359, 2016.

B. Winardi, A. Nugroho, and E. Dolphina, “Perencanaan Dan Analisis Ekonomi Pembangkit Listrik Tenaga Surya (PLTS) Terpusat Untuk Desa Mandiri,” J. Tekno, vol. 16, no. 2, pp. 1–11, 2019, doi: 10.33557/jtekno.v16i1.603.

M. Effendy, N. A. Mardiyah, and K. Hidayat, “Implementasi Maximum Power Point Tracking pada Photovoltaic Berbasis P&O-Fuzzy,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 6, no. 1, pp. 2–7, 2017, doi: 10.22146/jnteti.v6i1.302.

J. P. Ram, D. S. Pillai, N. Rajasekar, and S. M. Strachan, “Detection and Identification of Global Maximum Power Point Operation in Solar PV Applications Using a Hybrid ELPSO-PO Tracking Technique,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1361–1374, 2020, doi: 10.1109/JESTPE.2019.2900999.

K. Amara et al., “Improved Performance of a PV Solar Panel with Adaptive Neuro Fuzzy Inference System ANFIS based MPPT,” 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018, vol. 5, pp. 1098–1101, 2018, doi: 10.1109/ICRERA.2018.8566818.

M. Sahin, “A Comparative Study of Neural Networks and ANFIS for Forecasting Attendance Rate of Soccer Games,” Math. Comput. Appl., vol. 22, no. 4, pp. 2297–8747, 2017, doi: 10.3390/mca22040043.

T. Tarmizi, S. Syahrial, and F. Fathurrahman, “Design of PV System with DC distribution for Rural Electricity,” in 2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), 2021, pp. 46–50, doi: 10.1109/COSITE52651.2021.9649537.




DOI: https://doi.org/10.17529/jre.v19i2.23394

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


View My Stats

 

Creative Commons License

Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.