Penerapan Algoritma HSV pada Autonomous Car untuk Sistem Self-Driving Berbasis Raspberry Pi 4

Florentinus Budi Setiawan, Padang Ufqi Sutrisno, Leonardus Heru Pratomo, Slamet Riyadi

Abstract


Perkembangan teknologi di sektor transportasi di masa ini semakin krusial. Sehingga perusahaan berinovasi menciptakan mobil yang dapat berjalan sendiri dengan tingkat keamanan yang tinggi. Pada penelitian ini, kami merancang sistem self-driving untuk mobil RC skala 1:10 menggunakan komponen utama berupa Raspberry Pi 4 sebagai pengolahan citra untuk kendali otomatis pada autonomous car. Untuk mengatur pergerakan roda belakang dan steering menggunakan motor DC. Penelitian ini menerapkan computer vision yang dipakai untuk sistem navigasi agar dapat berjalan sesuai dengan lintasan. Permasalahan yang dijumpai pada penelitian sebelumnya adalah masih mengambil sampel lintasan terlebih dahulu yang dirasa kurang efisien karena pada jalan yang belum diambil sampelnya tidak dapat dilalui robot tersebut. Untuk memecahkan permasalahan ini maka peneliti menerapkan algoritma HSV agar dapat mengikuti lintasan secara real-time. Algoritma HSV(hue, saturation, value) merupakan sistem untuk mendeteksi tepi garis lintasan dengan memproses gambar dari kamera Raspberry Pi.  Dari hasil kalibrasi nilai threshold yang digunakan adalah sebesar Hmin = 135 dan Hmax = 179, Smin = 70 dan Smax = 255, dan nilai V sebesar Vmin = 53 dan Vmax = 106 agar dapat mendeteksi jalur lintasan secara jelas, baik di dalam ruangan maupun diluar ruangan,  dan HSV toleran terhadap perubahan intensitas cahaya. Itulah keuntungan dari algoritma HSV. Berdasarkan hasil pengujian dan implementasi robot ini dengan menggunakan kecerdasan buatan dapat bekerja sesuai dengan algoritma yang sudah dibuat dengan tingkat akurasi deteksi jalur yang cukup tinggi.


Keywords


autonomous car, self-driving, hsv, computer vision, raspberry pi

Full Text:

PDF

References


H. Thadeshwar, V. Shah, and M. Jain, “Artificial Intelligence based Self-Driving Car,” 2020, doi: 10.1109/ICCCSP49186.2020.9315223.

M. Daily, H. R. L. Laboratories, and S. Medasani, “Self-Driving Cars.”

I. Ahmad and K. Pothuganti, “Design implementation of real time autonomous car by using image processing IoT,” Proc. 3rd Int. Conf. Smart Syst. Inven. Technol. ICSSIT 2020, no. Icssit, pp. 107–113, 2020, doi: 10.1109/ICSSIT48917.2020.9214125.

T. A. S. Nielsen and S. Haustein, “On sceptics and enthusiasts: What are the expectations towards self-driving cars?,” Transp. Policy, vol. 66, no. April 2017, pp. 49–55, 2018, doi: 10.1016/j.tranpol.2018.03.004.

T. Zhang, H. M. Hu, and B. Li, “A Naturalness Preserved Fast Dehazing Algorithm Using HSV Color Space,” IEEE Access, vol. 6, no. c, pp. 10644–10649, 2018, doi: 10.1109/ACCESS.2018.2806372.

A. A. Mahersatillah, Z. Zainuddin, and Y. Yusran, “Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car,” 2020 3rd Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2020, pp. 688–693, 2020, doi: 10.1109/ISRITI51436.2020.9315452.

K. Kato and M. Wada, “International Symposium on System Integration”,” p. 8418294, 2013, doi: 10.1109/SII46433.2020.9026001.

B. C. Z. Blaga, M. A. Deac, R. W. Y. Al-Doori, M. Negru, and R. Danescu, “Miniature autonomous vehicle development on raspberry Pi,” Proc. - 2018 IEEE 14th Int. Conf. Intell. Comput. Commun. Process. ICCP 2018, pp. 229–236, 2018, doi: 10.1109/ICCP.2018.8516589.

L. R. Manangka et al., “Pengenalan Pola Lintasan Berbasis Neural Network Pada Prototype Self-Driving Car,” vol. 12, no. 2, pp. 67–72, 2020.

T. D. Do, M. T. Duong, Q. V. Dang, and M. H. Le, “Real-Time Self-Driving Car Navigation Using Deep Neural Network,” Proc. 2018 4th Int. Conf. Green Technol. Sustain. Dev. GTSD 2018, pp. 7–12, 2018, doi: 10.1109/GTSD.2018.8595590.

Z. Wang, Y. Fan, and H. Zhang, “Lane-line Detection Algorithm for Complex Road Based on OpenCV,” Proc. 2019 IEEE 3rd Adv. Inf. Manag. Commun. Electron. Autom. Control Conf. IMCEC 2019, no. Imcec, pp. 1404–1407, 2019, doi: 10.1109/IMCEC46724.2019.8983919.

J. Huang, B. Kong, B. Li, and F. Zheng, “A new method of unstructured road detection based on HSV color space and road features,” Proc. 2007 Int. Conf. Inf. Acquis. ICIA, vol. 255, pp. 596–601, 2007, doi: 10.1109/ICIA.2007.4295802.

Z. Sun, “Vision Based Lane Detection for Self-Driving Car,” Proc. 2020 IEEE Int. Conf. Adv. Electr. Eng. Comput. Appl. AEECA 2020, pp. 635–638, 2020, doi: 10.1109/AEECA49918.2020.9213624.

S. O. Ali Chishti, S. Riaz, M. Bilal Zaib, and M. Nauman, “Self-Driving Cars Using CNN and Q-Learning,” Proc. 21st Int. Multi Top. Conf. INMIC 2018, 2018, doi: 10.1109/INMIC.2018.8595684.

J. X. Zhao and M. Y. Liu, “A color HSV image edge detection method based on gradient extreme value,” Proc. - 2008 2nd Int. Symp. Intell. Inf. Technol. Appl. IITA 2008, vol. 3, pp. 381–384, 2008, doi: 10.1109/IITA.2008.9.

K. Jo, Y. Jo, J. K. Suhr, H. G. Jung, and M. Sunwoo, “Precise Localization of an Autonomous Car Based on Probabilistic Noise Models of Road Surface Marker Features Using Multiple Cameras,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3377–3392, 2015, doi: 10.1109/TITS.2015.2450738.

A. Aqthobilrobbany, A. N. Handayani, D. Lestari, Muladi, R. A. Asmara, and O. Fukuda, “HSV Based Robot Boat Navigation System,” CENIM 2020 - Proceeding Int. Conf. Comput. Eng. Network, Intell. Multimed. 2020, pp. 269–273, 2020, doi: 10.1109/CENIM51130.2020.9297915.

R. Mondal, M. S. Dey, and B. Chanda, “Image Restoration by Learning Morphological Opening-Closing Network,” Math. Morphol. - Theory Appl., vol. 4, no. 1, pp. 87–107, 2020, doi: 10.1515/mathm-2020-0103.

Y. Lin, H. Zhao, C. Ye, and H. Ding, “A computationally efficient and robust kinematic calibration model for industrial robots with kinematic parallelogram,” 2017 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2017, vol. 2018-Janua, pp. 1–6, 2018, doi: 10.1109/ROBIO.2017.8324602.

W. Lim, S. Member, S. Lee, S. Member, M. Sunwoo, and K. Jo, “Hierarchical Trajectory Planning of an Autonomous Car Based on the Integration of a Sampling and an Optimization Method,” vol. 19, no. 2, pp. 613–626, 2018.




DOI: https://doi.org/10.17529/jre.v18i4.27495

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks



View My Stats

 

Creative Commons License

Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.