Multi-Class Heart Abnormalities Detection Based on ECG Graph Using Transfer Learning Method
Abstract
Keywords
Full Text:
PDFReferences
E. M. Dewi, S. Aulia, and S. Hadiyoso, “Multi-abnormal ECG signal classification using dispersion entropy and statistic feature,” TELKOMIKA Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik Elektronika, vol. 10, no. 3, pp. 677, 2022.
S. Hadiyoso, S. Aulia, and A. Rizal, “One-lead electrocardiogram for biometric authentication using time series analysis and Support Vector Machine,” International Journal of Advanced Computer Science and Application, vol. 10, no. 2, 2019.
S. Hadiyoso, I. Wijayanto, A. Rizal, and S. Aulia, “Biometric systems based on ECG using ensemble empirical mode decomposition and variational mode decom-position,” Journal of Applied Engineering Science, vol. 18, no. 2, pp. 181–191, 2020.
S. Aulia and S. Hadiyoso, “Abnormal ECG classification using empirical mode decomposition and entropy,” Jurnal Rekayasa Elektrika, vol. 17, no. 3, pp. 191–198, 2021.
A. Wroblewska et al., “A Deep learning approach for automatic detection of qualitative features of lecturing,” Jordanian Journal of Computers and Information Technology, vol. 06, no. 03, pp. 1–9, 2022.
N. Kalaivani, N. Manimaran, S. Sophia, and D. D. Devi, “Deep learning based lung cancer detection and classification,” IOP Conference Series: Material Science Engineering, vol. 994, no. 1, pp. 1-5, 2020.
M. Ahsan, R. Gomes, and A. Denton, “Application of a convolutional neural network using transfer learning for tuberculosis detection,” in Proc. IEEE International Conference on Electro Information Technology, 2019, pp. 427–433.
M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling for convolutional neural networks,” in Proc. 36th International Conference on Machine Learning, 2019, pp. 10691–10700.
S. Hadiyoso and S. Aulia, “Classification of koilonychia, beaus lines, and leu-konychia based on nail image using transfer learning VGG-16,” Jurnal Rekayasa Elektrika, vol. 18, no. 2, pp. 109–114, 2022.
M. Masud, N. Sikder, A. Al Nahid, A. K. Bairagi, and M. A. Alzain, “A machine learning approach to diagnosing lung and colon cancer using a deep learning based classification framework,” Sensors, vol. 21, no. 3, pp. 1–21, 2021.
M. Liebenlito, Y. Irene, and A. Hamid, “Classification of tuberculosis and pneumonia in human lung based on chest x-ray image using convolutional neural network,” Inprime: Indonesian Journal of Pure and Applied Mathematics, vol. 2, no. 1, pp. 24–32, 2020.
D. Bendarkar, P. Somase, P. Rebari, R. Paturkar, and A. Khan, “Web-based recognition and translation of american sign language with CNN and RNN,” International Journal of online and Biomedical Engineering, vol. 17, no. 1, pp. 34–50, 2021.
S. Aulia, S. Hadiyoso, T. L. E. R. Mengko, and A. B. Suksmono, “Covid-19 and tuberculosis classification based on chest x-ray using convolutional neural network,” in Proc. International Conference on Electronics, Biomedical Engineering, and Health Informatics, 2021, pp. 407–420.
K. Ramasubramanian and A. Singh, Machine Learning Using R, Berkeley, CA: Apress, 2019.
O. Rochmawanti, F. Utaminingrum, and F. A. Bachtiar, “Analisis performa pre-trained model convolutional neural network dalam mendeteksi penyakit tuberkulosis,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 4, pp. 805, 2021.
I. Wahlang, P. Sharma, S. Sanyal, G. Saha, and A. K. Maji, “Deep learning techniques for classification of brain MRI,” International Journal of Intelligent System Technologies and Applicayions, vol. 19, no. 6, pp. 571–588, 2020,
Z. Yuan et al., “Automatic polyp detection in colonoscopy videos,” IEEE Transaction on Medical Imaging, vol. 10133, pp. 101332K, 2017.
Y. T. Li and J. I. Guo, “A VGG-16 based faster RCNN model for PCB error in-spection in industrial AOI applications,” in Proc. IEEE International Conference on Consumer Electronics-Taiwan, 2018, pp. 1–2.
B. R. Nanditha, A. G. Kiran, H. S. Chandrashekar, M. S. Dinesh, and S. Murali, “An ensemble deep neural network approach for oral cancer screening,” Int. J. online Biomed. Eng., vol. 17, no. 2, pp. 121–134, 2021.
A. Elnakib, H. M. Amer, and F. E. Z. Abou-Chadi, “Early lung cancer detection using deep learning optimization,” International Journal of Online and Biomedical Engineering, vol. 16, no. 6, pp. 82–94, 2020.
S. Jamil and M. Rahman, “A novel deep-learning-based framework for the classification of cardiac arrhythmia,” Journal of Imaging, vol. 8, no. 3, 2022.
Y. Liang, S. Yin, Q. Tang, Z. Zheng, M. Elgendi, and Z. Chen, “Deep learning algorithm classifies heartbeat events based on electrocardiogram signals,” Frontiers in Physiology, vol. 11, pp. 1-10, 2020.
S. Śmigiel, K. Pałczyński, and D. Ledziński, “ECG signal classification using deep learning techniques based on the PTB XL dataset,” Entropy, vol. 23, no. 9, pp. 1–20, 2021.
S. Ji, R. Li, S. Shen, B. Li, B. Zhou, and Z. Wang, “Heartbeat classification based on multifeature combination and stacking DWKNN algorithm,” Journal of Healthcare Engineering, vol. 2021, pp. 1-14, 2021.
Physionet Database. Available: http://www.physionet.org
DOI: https://doi.org/10.17529/jre.v19i1.28637
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
View My Stats
Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.