Gas Detection and Classification Using Neural Network Based Gas Sensors

Munaf Ismail, Sri Arttini Dwi Prasetyowati


Alcoholic beverages, apart from being haram, also cause loss of consciousness. The influence of alcohol while driving is very dangerous and can result in an accident. For this reason, it is necessary to detect the alcohol content in beverages so that their halal status is known and to avoid the dangers of consuming alcohol. This research is to detect the aroma of alcohol using the MQ-3 gas sensor, which consists of an aroma sensor in general with an Artificial Neuron Network (ANN), such as the number of neurons, layers, and epoch. Most of the learning schemes require testing to optimize the model structure. For this experiment, ANN is used as a liquid classification in grouping alcoholic and non-alcoholic liquids. The MQ-3 gas sensor successfully reads liquid vapor in alcohol with levels of 30%, 50%, 70%, and other water-based liquids. An artificial neural network with 2 hidden layers, 10 neurons, and 1000 iterations with the sigmoid activation function can approach a regression score of 1.1545 and sq error score of 0.5781.


alcohol gas; gas sensor; Artificial Neuron Network

Full Text:



R. H. Belvage, “Mabuk (di) Indonesia : membongkar struktur di balik fenomena korban tewas karena oplosan,” Umbara, vol. 2, no. 2, pp. 97–112, 2019.

S. Iliev, “A comparison of ethanol, methanol, and butanol blending with gasoline and its effect on engine performance and emissions using engine simulation,” Processes, vol. 9, no. 8, pp. 1-14, 2021.

A. Yanti, S. Mursiti, N. Widiarti, B. Nurcahyo, and M. Alauhdin, “Indonesian journal of chemical science optimalisasi metode penentuan kadar etanol dan metanol pada minuman keras oplosan menggunakan kromatografi gas (KG),” Indonesian Journal of Chemistry, vol. 8, no. 1, pp. 54–59, 2019.

A. Helwig, A. Hackner, G. Müller, D. Zappa, and G. Sberveglieri, “Self-test procedures for gas sensors embedded in microreactor systems,” Sensors, vol. 18, no. 2, pp. 453, 2018. [

J. Juárez, A. Sánchez, R. Díaz, and L. Altamirano, “Application of an artificial neural network to classify countries with COVID-19 adjusting to SIR model,” Memorias del XLII Congreso Nacional de Ingeniería Biomédica, vol. 7, no. 1, 2019.

F. T. Admojo and Ahsanawati, “Klasifikasi aroma alkohol menggunakan metode KNN,” Indonesian Journal of Data and Science, vol. 1, no. 2, pp. 34–38, 2020.

S. Agarwal and M. Zubair, “Classification of alcoholic and non alcoholic EEG signals based on sliding-SSA and independent component analysis,” Sensors Journal, vol. 21, no. 23, pp. 26198– 26206, 2021.

Z. E. Fitri, W. B. Nugroho, A. Madjid, and A. M. N. Imron, “Comparison of neural network methods for classification of banana varieties (musa paradiasaca),” Jurnal Rekayasa Elektrika, vol. 17, no. 2, 2021.

D. Haryadi, S. Hidayatul Yulianing Tyas, A. Kuncoro, F. Firdhan Pratama Putra, and A. Ariyanto, “Identifikasi citra kualitas minyak kelapa sawit berbasis android menggunakan algoritma convolutional neural network,” Jurnal Rekayasa Elektrika, vol. 18, no. 4, pp. 248–254, 2022.

M. Ismail, A. Marwanto, J. P. Hapsari, and M. Haddin, “Embedded alcohol sensing design and analysis for air samples,” in Proc International Conference on Electrical Engineering, Computer Science and Informatics, 2021, pp. 85–89.

H. Nazemi, A. Joseph, J. Park, and A. Emadi, “Advanced micro and nano-gas sensor technology: A review,” Sensors, vol. 19, no. 6, pp.1-23, 2019.

M. Ismail, M. Haddin, and A. Suprajitno, “Implementasi logika fuzzy untuk akuisi data berbasis web server,” in Prosiding Seminar Nasional Teknologi dan Informatika, 2015, pp. 221–228.

W. Maharani, “Klasifikasi data menggunakan JST backpropagation momentum dengan adaptive learning rate,” in Seminar Nasional Informatika, 2015, pp.25-31.

H. R. Estakhroueiyeh and E. Rashedi, “Detecting moldy bread using an e-nose and the KNN classifier,” in Proc. International Conference on Computer and Knowledge Engineering, 2015, pp. 251–255.

E.L. Leavline, “Artificial neural network design flow for classification problem using MATLAB,” International journal of advanced research in biological sciences, vol. 1, no. 6, pp. 2395–695, 2015.

S. Prasetyowati, B. Arifin, J. Ardalli, M. Ismail, I. M. I. Subroto, and M. H. Purnomo, “Hybrid FLC-LMS algorithm for predicting sediment volume in the river,” International Journal of Intelligent Engineering and Systems, vol. 14, no. 2, pp. 395-409, 2021.

J. K. Srivastava and D. Kumar, “Implementation of artificial neural network for detection of LPG through Pd- doped SnO2 based thick film gas sensor,” International Journal of Scientific Research, vol. 9, no. 6, pp. 2–7, 2021.

P. Alkhairi, E. R. Batubara, R. Rosnelly, W. Wanayaumini, and H. S. Tambunan, “Effect of gradient descent with momentum backpropagation training function in detecting alphabet letters,” Sinkron Jurnal dan Penelitian Teknik Informatika, vol. 8, no. 1, pp. 574–583, 2023.

Z. E. Fitri, R. Rizkiyah, A. Madjid, and A. M. N. Imron, “Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat,” Jurnal Rekayasa Elektrika, vol. 16, no. 1, pp. 44–49, 2020.

K. Kasdianto and S. Aisyah, “Desain sistem pendeteksi untuk citra base sub-assembly dengan algoritma backpropagation,” Jurnal Rekayasa Elektronika, vol. 13, no. 1, pp. 1, 2017.


Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

View My Stats


Creative Commons License

Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.