Augmentation of Additional Arabic Dataset for Jawi Writing and Classification Using Deep Learning
Abstract
Keywords
Full Text:
PDFReferences
M. F. Nasrudin, K. Omar, M. S. Zakaria, and L. C. Yeun, “Handwritten Cursive Jawi Character Recognition : A Survey,” pp. 247–256, 2008, doi: 10.1109/CGIV.2008.36.
S. Safrizal, F. Arnia, and R. Muharar, “Pengenalan Aksara Jawi Tulisan Tangan Menggunakan Freemen Chain Code (FCC), Support Vector Machine (SVM) dan Aturan Pengambilan Keputusan,” Jurnal Nasional Teknik Elektro, vol. 5, no. 1, p. 45, 2016, doi: 10.25077/jnte.v5n1.185.2016.
H. M. Balaha, H. A. Ali, M. Saraya, and M. Badawy, “A new Arabic handwritten character recognition deep learning system (AHCR-DLS),” Neural Comput Appl, vol. 33, no. 11, pp. 6325–6367, Jun. 2021, doi: 10.1007/s00521-020-05397-2.
M. A. Khan, “Arabic handwritten alphabets, words and paragraphs per user (AHAWP) dataset,” Data Brief, vol. 41, p. 107947, Apr. 2022, doi: 10.1016/j.dib.2022.107947.
F. Mushtaq, M. M. Misgar, M. Kumar, and S. S. Khurana, “UrduDeepNet: offline handwritten Urdu character recognition using deep neural network,” Neural Comput Appl, 2021, doi: 10.1007/s00521-021-06144-x.
M. M. Misgar, F. Mushtaq, S. S. Khurana, and M. Kumar, “Recognition of offline handwritten Urdu characters using RNN and LSTM models,” Multimed Tools Appl, vol. 82, no. 2, pp. 2053–2076, Jan. 2023, doi: 10.1007/s11042-022-13320-1.
A. El-Sawy, M. Loey, and H. El-Bakry, “Arabic Handwritten Characters Recognition using Convolutional Neural Network,” WSEAS Transactions on Computer Research, vol. 5, pp. 11–19, 2017, Accessed: Dec. 20, 2022. [Online]. Available: https://www.wseas.org/multimedia/journals/computerresearch/2017/a045818-075.pdf
N. Pratiwi, “Dataset of Handwritten Arabic Characters with Harakat (Fathah, Kasrah and Dhammah),” Mendeley Data, V1,. Mendeley, 2022.
M. AbdElNafea and S. Heshmat, “Novel Databases for Arabic Online Handwriting Recognition System,” in 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), IEEE, Feb. 2020, pp. 263–267. doi: 10.1109/ITCE48509.2020.9047778.
S. Safrizal, “Pengenalan Karakter Jawi Tulisan Tangan Menggunakan Fitur Sudut,” VOCATECH: Vocational Education and Technology Journal, vol. 1, no. 1, pp. 1–4, 2019, doi: 10.38038/vocatech.v1i0.1.
S. Razali, Fitri Arnia, Rusdha Muharrar, Kahlil Muchtar, and Akhyar Bintang, “Improved Classification of Handwritten Jawi Script Based on Main Part of Script Body,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 1, pp. 94–104, Feb. 2023, doi: 10.29207/resti.v7i1.4600.
K. Saddami, K. Munadi, Y. Away, and F. Arnia, “DHJ: A database of handwritten Jawi for recognition research,” in 2017 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, Oct. 2017, pp. 292–296. doi: 10.1109/ICELTICS.2017.8253279.
S. Joseph and J. George, “Data Augmentation for Handwritten Character Recognition of MODI Script Using Deep Learning Method,” 2021, pp. 515–522. doi: 10.1007/978-981-15-7062-9_51.
N. Elaraby, S. Barakat, and A. Rezk, “A conditional GAN-based approach for enhancing transfer learning performance in few-shot HCR tasks,” Sci Rep, vol. 12, no. 1, p. 16271, Sep. 2022, doi: 10.1038/s41598-022-20654-1.
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J Big Data, vol. 6, no. 1, Dec. 2019, doi: 10.1186/s40537-019-0197-0.
S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image Data Augmentation for Deep Learning: A Survey,” Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.08610
Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random Erasing Data Augmentation,” Aug. 2017, [Online]. Available: http://arxiv.org/abs/1708.04896
H. Inoue, “Data Augmentation by Pairing Samples for Images Classification,” Jan. 2018.
C. Summers and M. J. Dinneen, “Improved Mixed-Example Data Augmentation,” May 2018, [Online]. Available: http://arxiv.org/abs/1805.11272
R. Takahashi, T. Matsubara, and K. Uehara, “Data Augmentation using Random Image Cropping and Patching for Deep CNNs,” Nov. 2018, doi: 10.1109/TCSVT.2019.2935128.
A. Stephen, A. Punitha, and A. Chandrasekar, “Designing self attention-based ResNet architecture for rice leaf disease classification,” Neural Comput Appl, vol. 35, no. 9, pp. 6737–6751, Mar. 2023, doi: 10.1007/s00521-022-07793-2.
G. Meena, K. K. Mohbey, S. Kumar, R. K. Chawda, and S. V. Gaikwad, “Image-Based Sentiment Analysis Using InceptionV3 Transfer Learning Approach,” SN Comput Sci, vol. 4, no. 3, p. 242, Mar. 2023, doi: 10.1007/s42979-023-01695-3.
Institute of Electrical and Electronics Engineers, 2018 International Interdisciplinary PhD Workshop (IIPhDW) : 9-12 May 2018.
L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, p. 53, Dec. 2021, doi: 10.1186/s40537-021-00444-8.
A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti, and D. De, “Fundamental Concepts of Convolutional Neural Network,” vol. 172, V. E. Balas, R. Kumar, and R. Srivastava, Eds., in Intelligent Systems Reference Library, vol. 172. , Cham: Springer International Publishing, 2020, pp. 519–567. doi: 10.1007/978-3-030-32644-9_36.
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in International Conference on Learning Representations , May 2015, pp. 1–14. doi: 10.48550/arXiv.1812.01187.
T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of Tricks for Image Classification with Convolutional Neural Networks,” Dec. 2018, [Online]. Available: http://arxiv.org/abs/1812.01187
L. R. Baltazar et al., “Artificial intelligence on COVID-19 pneumonia detection using chest xray images,” PLoS One, vol. 16, no. 10, p. e0257884, Oct. 2021, doi: 10.1371/journal.pone.0257884.
N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans Syst Man Cybern, vol. 9, no. 1, pp. 62–66, Jan. 1979, doi: 10.1109/TSMC.1979.4310076.
R. Andonie, “Hyperparameter optimization in learning systems,” Journal of Membrane Computing, vol. 1, no. 4, pp. 279–291, Dec. 2019, doi: 10.1007/s41965-019-00023-0.
S. R. Shah, S. Qadri, H. Bibi, S. M. W. Shah, M. I. Sharif, and F. Marinello, “Comparing Inception V3, VGG 16, VGG 19, CNN, and ResNet 50: A Case Study on Early Detection of a Rice Disease,” Agronomy, vol. 13, no. 6, p. 1633, Jun. 2023, doi: 10.3390/agronomy13061633.
R. Zhang, L. Du, Q. Xiao, and J. Liu, “Comparison of Backbones for Semantic Segmentation Network,” J Phys Conf Ser, vol. 1544, no. 1, p. 012196, May 2020, doi: 10.1088/1742-6596/1544/1/012196.
M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” Aug. 2020.
M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.
DOI: https://doi.org/10.17529/jre.v20i1.33722
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
View My Stats
Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.