Optimization of Electrospinning Temperature Control System IoT-Based with DHT21

Della Astri Widayani, Luluk Arifatul Hikamiah, Panji Setyo Nugroho, Dewa Pascal Ariyanto, Jasmine Cupid Amaratirta, Dewanto Harjunowibowo, Yulianto Agung Rezeki

Abstract


Electrospinning is a method of making nanomaterials that has a fairly easy and flexible process that can produce nanofiber continuously. Nanofiber morphology from the electrospinning process is influenced by several parameters, one of them is temperature as an environmental parameter. If there is no temperature control system in the electrospinning system, it will be difficult to maintain the consistency of the morphology nanofiber and at certain temperatures, nanofibers are not formed. Therefore, this study aims to develop a temperature control system for electrospinning called the Electrospinning Temperature Control (ETC) System and connect it with an internet-of- things (IoT) platform to understand the dynamics of the temperature control process, upload temperature data to the cloud, and remote monitoring. The method used by designing and building system hardware and software, calibrating DHT21 as a temperature sensor and testing system performance. The results show that the calibration of the DHT21 sensor has an accuracy rate of 94.95% and a precision rate of 98.93%, while the results of the performance test show that the system can raise, maintain, and lower the temperature. Further performance testing reveals that the ETC system can operate within a temperature range of 20−40°C. The IoT system using the Blynk App allows users to remote and monitor easily, and using Google Sheets as a cloud database. The ETC system was successfully built and can be applied to electrospinning experiments.

Keywords


blynk app; DHT21; electrospinning temperature control; ESP8266; nodemcu

Full Text:

PDF

References


O. M. Ikumapayi, E. T. Akinlabi, A. O. M. Adeoye, and S. O. Fatoba, “Microfabrication and nanotechnology in manufacturing system - An overview,” Mater. Today Proc., vol. 44, no. December, pp. 1154–1162, 2021.

Q. Wu, W. S. Miao, Y. Du Zhang, H. J. Gao, and D. Hui, “Mechanical properties of nanomaterials: A review,” Nanotechnol. Rev., vol. 9, no. 1, pp. 259–273, 2020.

S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett., vol. 10, no. 1, 2015.

D. Giljohann, D. Seferos, W. Daniel, M. Massich, P. Patel, and C. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem. Int. Ed. Engl., vol. 49, no. 19, pp. 3280–3294, 2014.

Y. A. Rezeki, D. A. Hapidin, H. Rachmawati, M. M. Munir, and K. Khairurrijal, “Formation of electrosprayed composite nanoparticles from polyvinylpyrrolidone/mangosteen pericarp extract,” Adv. Powder Technol., vol. 31, no. 5, pp. 1811–1824, 2020.

Y. Gao, Y. B. Truong, Y. Zhu, and I. Louis Kyratzis, “Electrospun antibacterial nanofibers: Production, activity, and in vivo applications,” J. Appl. Polym. Sci., vol. 131, no. 18, pp. 9041–9053, 2014.

A. V., S. R., G. Angadi, and N. M. H.N., “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers,” J. Nanosci. Nanoeng. Appl., vol. 9, no. 3, pp. 1–6, 2019.

S. M. Tan et al., “Electrospinning and its potential in fabricating pharmaceutical dosage form,” J. Drug Deliv. Sci. Technol., vol. 76, p. 103761, Oct. 2022.

A. Luraghi, F. Peri, and L. Moroni, “Electrospinning for drug delivery applications: A review,” J. Control. Release, vol. 334, pp. 463–484, 2021.

Q. Zhang et al., “Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes,” Smart Mater. Struct., vol. 28, no. 5, pp. 22–24, 2019.

G.-Z. Yang, H.-P. Li, J.-H. Yang, J. Wan, and D.-G. Yu, “Influence of working temperature on the formation of electrospun polymer nanofibers,” Nanoscale Res. Lett., vol. 12, pp. 1–10, 2017.

F. Huang, Q. Wei, J. Wang, Y. Cai, and Y. Huang, “Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning,” E-Polymers, no. 152, pp. 1–8, 2008.

O. Hardick, B. Stevens, and D. G. Bracewell, “Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency,” J. Mater. Sci., vol. 46, pp. 3890–3898, 2011.

D. Thuy et al., “Temperature effects on electrospun chitosan nanofibers,” Green Process. Synth., vol. 9, pp. 488–495, 2020.

H. M. Chen and D. G. Yu, “An elevated temperature electrospinning process for preparing acyclovir-loaded PAN ultrafine fibers,” J. Mater. Process. Technol., vol. 210, no. 12, pp. 1551–1555, 2010.

H. Lara-Padilla, C. Mendoza-Buenrostro, D. Cardenas, A. Rodriguez-Garcia, and C. A. Rodriguez, “Influence of controlled cooling in bimodal scaffold fabrication using polymers with different melting temperatures,” Materials (Basel)., vol. 10, no. 6, pp. 1–16, 2017.

D. Abbas, M. S. Mu’min, M. Bonanno, S. Thiele, and T. Böhm, “Active solution heating and cooling in electrospinning enabling spinnability from various solvents,” J. Appl. Polym. Sci., vol. 139, no. 31, pp. 1–11, 2022.

J. Lv, Q. Zhou, P. Chen, Y. Wang, and W. Wang, “Effect of receiver plate temperature and magnetic lens on the performance of electrospun PAN,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 676, no. PA, p. 132130, 2023.

A.-V. Midyk and O. Lysa, “Studies of temperature-humidity characteristics of the greenhouse cyber-physical system,” Вимірювальна техніка та метрологія, no. 2, pp. 7–12, 2020.

S. Dubey, M. C. Chinnaiah, I. A. Pasha, K. Sai Prasanna, V. Praveen Kumar, and R. Abhilash, “An IoT based Ayurvedic approach for real time healthcare monitoring,” AIMS Electron. Electr. Eng., vol. 6, no. 3, pp. 329–344, 2022.

Aosong, Temperature and humidity module AM2301 Product Manual. 2017. [Online]. Available: www.aosong.com

H. Durani, M. Sheth, M. Vaghasia, and S. Kotech, “Smart automated home application using IoT with Blynk App,” in 2018 Second international conference on inventive communication and computational technologies (ICICCT), 2018, pp. 393–397.

I. Plauska, A. Liutkevičius, and A. Janavičiūtė, “Performance evaluation of C/C++, micropython, rust and tinygo programming languages on ESP32 microcontroller,” Electronics, vol. 12, no. 1, p. 143, 2022.

D. Firdaus, “Permainan disco TKO menggunakan Google Sheets sebagai upaya meningkatkan kualitas pembelajaran matematika pada siswa kelas IXA SMP Negeri 1 Welahan,” J. Pendidik. Indones., vol. 3, no. 02, pp. 153–160, 2022.

S. W. Suciyati, M. S. Hidayatullah, and G. A. Pauzi, “An analysis of data acquisition system of temperature, oxygen, and carbon dioxide in refrigerator with Arduino Mega 2560,” J. Ilm. Pendidik. Fis. Al-Biruni, vol. 10, no. 1, pp. 119–127, 2021.

A. Setyawan, “Validasi metoda analisis besi (Fe) pada limbah radioaktif cair menggunakan spektrofotometer serapan atom berdasarkan SNI 6989.4:2009 dan SOP-PTLR,” in Prosiding Hasil Penelitian dan Kegiatan, 2018, pp. 93-102. Pusat Teknologi Limbah Radioaktif-BATAN.

D. K. Lee, J. In, and S. Lee, “Standard deviation and standard error of the mean,” Korean J. Anesthesiol., vol. 68, no. 3, pp. 220–223, 2015.

D. Kurnia, “Analisis signifikansi Leverage dan kebijakan deviden terhadap nilai perusahaan,” J. Account., vol. 4, no. 2, pp. 12–21, 2017.

N. Pandis, “Linear regression,” Am. J. Orthod. Dentofac. Orthop., vol. 149, no. 3, pp. 431–434, 2016.

L. Hebei I.T. (Shanghai) Co., “Performance specifications of TEC1-12706,” Appl. Note, pp. 2–4, 2010, [Online]. Available: www.hebeiltd.com.cn

F. Afshari, “Experimental and numerical investigation on thermoelectric coolers for comparing air-to-water to air-to-air refrigerators,” J. Therm. Anal. Calorim., vol. 144, no. 3, pp. 855–868, 2020.




DOI: https://doi.org/10.17529/jre.v20i4.37537

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


View My Stats

 

Creative Commons License

Jurnal Rekayasa Elektrika (JRE) is published under license of Creative Commons Attribution-ShareAlike 4.0 International License.