Preparation and Characterization of Activated Carbon Made from Robusta Coffee Skin (Coffea Canephora)
Abstract
Indonesia is one of the coffee-producing countries where production tends to increase from year to year. Currently, residuals from coffee-fruit processing such as coffee-skin and husks are thrown away without any use and this biomass residual contains several toxic chemicals such as alkaloids, tannins, and polyphenols. One of potential uses of coffee-industry by-product is to make activated carbon (ACs), which is made through a carbonation process and followed by an activation process. In this study, chemical activation was carried out using chemical activators ZnCl2 and NaOH. The purpose of this study is to prepare and investigate the characteristics of chemically activated coffee skin bio-char focusing on the surface properties and iodine adsorption capacity. Prior to carbon activation, a purpose built pilot-scale reactor was fabricated and tested at temperatures of 400 °C and 500 °C. The difference in carbonation temperature and variations in activator concentration alter the absorption properties. The results showed that the coffee-skin pyrolyzed at 500 °C and activated by 2% NaOH solution exhibits the highest absorption value of 720.2 mg/g. Lower absorption values were observed in any ZnCl2 activator samples. SEM-EDS analysis result suggests significant changes in composition of the ACs before and after activation. Most of impurities are gone during activation and washing. The value of C atoms increases and the pores structure of the activated carbon are expanding showing suitable properties for adsorbent.
Keywords
Full Text:
PDFReferences
Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J. J., & Gaspard, S. (2009). Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Journal of Hazardous Materials, 165(1–3), 1029–1039. https://doi.org/10.1016/j.jhazmat.2008.10.133
Aygün, A., Yenisoy-Karakaş, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66(2–3), 189–195. https://doi.org/10.1016/j.micromeso.2003.08.028
Babu, B. V., & Gupta, S. (2008). Adsorption of Cr(VI) using activated neem leaves: Kinetic studies. Adsorption, 14(1), 85–92. https://doi.org/10.1007/s10450-007-9057-x
Badan Pusat Statistik. (2018). Statistik Kopi Indonesia 2017.
Badan Standarisasi Nasional. 1995. SNI 06-3730-1995, Arang Aktif Teknis.
Castro, C. S., Guerreiro, M. C., Oliveira, L. C. A., Gonçalves, M., Anastácio, A. S., & Nazzarro, M. (2009). Iron oxide dispersed over activated carbon: Support influence on the oxidation of the model molecule methylene blue. Applied Catalysis A: General, 367(1–2), 53–58. https://doi.org/10.1016/j.apcata.2009.07.032
Cheng, H. N., Wartelle, L. H., Klasson, K. T., & Edwards, J. C. (2010). Solid-state NMR and ESR studies of activated carbons produced from pecan shells. Carbon, 48(9), 2455–2469. https://doi.org/10.1016/j.carbon.2010.03.016
Dang, V. B. H., Doan, H. D., Dang-Vu, T., & Lohi, A. (2009). Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresource Technology, 100(1), 211–219. https://doi.org/10.1016/j.biortech.2008.05.031
Danish, M., Sulaiman, O., Rafatullah, M., Hashim, R., & Ahmad, A. (2010). Kinetics for the removal of paraquat dichloride from aqueous solution by activated date (phoenix dactylifera) stone carbon. Journal of Dispersion Science and Technology, 31(2), 248–259. https://doi.org/10.1080/01932690903167368
Danish, Mohammed, Hashim, R., Mohamad Ibrahim, M. N., & Sulaiman, O. (2014). Response surface methodology approach for methyl orange dye removal using optimized Acacia mangium wood activated carbon. Wood Science and Technology, 48(5), 1085–1105. https://doi.org/10.1007/s00226-014-0659-7
Diao, Y., Walawender, W. P., & Fan, L. T. (2002). Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresource Technology, 81(1), 45–52. https://doi.org/10.1016/S0960-8524(01)00100-6
El-Hendawy, A. N. A., Samra, S. E., & Girgis, B. S. (2001). Adsorption characteristics of activated carbons obtained from corncobs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180(3), 209–221. https://doi.org/10.1016/S0927-7757(00)00682-8
Emmy Sahara, N. K. D. dan I. B. P. M. (2017). Pembuatan dan Karakterisasi Arang Aktif Dari Batang Tanaman Gumitir (Tagetes Erecta) Dengan Aktivator NaOH. JURNAL KIMIAProgam Studi Kimia FMIPA Universitas Udayana, 11 (2), 174-180.
Foo, K. Y., & Hameed, B. H. (2009). Value-added utilization of oil palm ash: A superior recycling of the industrial agricultural waste. Journal of Hazardous Materials, 172(2–3), 523–531. https://doi.org/10.1016/j.jhazmat.2009.07.091
Heo, Y. J., & Park, S. J. (2015). Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. Journal of Industrial and Engineering Chemistry, 31, 330–334. https://doi.org/10.1016/j.jiec.2015.07.006
Idrus, R., Lapanporo, B. P., & Putr, Y. S (2013). Pengaruh Suhu Aktivasi Terhadap Kualitas Karbon Aktif Berbahan Dasar Tempurung Kelapa. Prisma Fisika, Vol.I, No.1 (2013), Hal. 50-55, I(1), 50–55.
Kumar, S., Rajmohan, B., Mohanty, K., & Meikap, B. C. (2009).
Characterisation of activated carbon prepared from tamarind wood for wastewater treatment. International Journal of Environmental Engineering, 2(1/2/3), 290. https://doi.org/10.1504/ijee.2010.029836
López de Letona Sánchez, M., Macías-García, A., Díaz-Díez, M. A., Cuerda-Correa, E. M., Gañán-Gómez, J., & Nadal-Gisbert, A. (2006). Preparation of activated carbons previously treated with hydrogen peroxide: Study of their porous texture. Applied Surface Science, 252(17), 5984–5987. https://doi.org/10.1016/j.apsusc.2005.11.022
Macedo, J. de S., da Costa Júnior, N. B., Almeida, L. E., Vieira, E. F. da S., Cestari, A. R., Gimenez, I. de F., Villarreal Carreño, N. L., & Barreto, L. S. (2006). Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust. Journal of Colloid and Interface Science, 298(2), 515–522. https://doi.org/10.1016/j.jcis.2006.01.021
Marcilla, A., García-García, S., Asensio, M., & Conesa, J. A. (2000). Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells. Carbon, 38(3), 429–440. https://doi.org/10.1016/S0008-6223(99)00123-2
Maulinda, L., ZA, N., & Sari, D. N. (2017). Pemanfaatan Kulit Singkong sebagai Bahan Baku Karbon Aktif. Jurnal Teknologi Kimia Unimal, 4(2), 11. https://doi.org/10.29103/jtku.v4i2.69
Md Arshad, S. H., Ngadi, N., Aziz, A. A., Amin, N. S., Jusoh, M., & Wong, S. (2016). Preparation of activated carbon from empty fruit bunch for hydrogen storage. Journal of En
DOI: https://doi.org/10.23955/rkl.v15i2.17618
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Raudhatul Raihan, Adi Setiawan, Lukman Hakim, Muhammad Muhammad
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL REKAYASA KIMIA & LINGKUNGAN
Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA
PRINCIPAL CONTACT
Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.usk.ac.id, nasrular@usk.ac.id
SUPPORT CONTACT
Mirna Rahmah Lubis
E-mail: mirna@che.usk.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.usk.ac.id