Adsorption of Mercury Using Different Types of Activated Bentonite: A Study of Sorption, Kinetics, and Isotherm Models

Muhammad Naswir, Jalius Jalius, Desfaur Natalia, Susila Arita, Yudha Gusti Wibowo

Abstract


Mercury is a hazardous element because of its toxicity and harmful effects on human health. Various traditional and low-cost methods have been developed to remove mercury from wastewater. This study used local raw material as an alternative adsorbent to treat mercury-contaminated wastewater. Activated bentonite was prepared using different chemical activators (H3PO4, HCl, and ZnCl2) in various concentrations. Then, it was dried at 200°C for an hour. The materials were characterized by SEM-EDS. Its percent removal and isotherm models were analyzed. In this study, the most effective activator was H3PO4 and the experimental data matched the Freundlich model.

 


Keywords


Activated bentonite; mercury; wastewater treatment; Chemical activators

Full Text:

PDF

References


Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Hindawi: Journal of Chemistry, Article ID, 1–11. https://doi.org/https://doi.org/10.1155/2017/3039817 Review

Baer, N. S., Tsuge, S., Challinor, J. M., Watt, B. E., Galipo, R. C., Wampler, T. P., Jansson, K., Shedrinsky, A., Maddock, C. J., Morgan, S. L., Munson, T. O., Ottley, T. W., Ohtani, H., & Zawodny, C. (2006). Applied Pyrolysis Handbook.

Bendou, S., & Amrani, M. (2014). Effect of Hydrochloric Acid on the Structural of Sodic-Bentonite Clay. Journal of Minerals and Materials Characterization and Engineering, 2(5), 404–413. https://doi.org/10.4236/jmmce.2014.25045

Bruggen, B. Van Der. (2003). Freundlich Isotherm. In Encyclopedia of Membranes (pp. 1–2). https://doi.org/10.1007/978-3-642-40872-4

Coggins, A. M., Jennings, S. G., & Ebinghaus, R. (2006). Accumulation rates of the heavy metals lead , mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmospheric Environment, 40, 260–278. https://doi.org/10.1016/j.atmosenv.2005.09.049

Didi, M. A., Makhoukhi, B., Azzouz, A., & Villemin, D. (2009). Applied Clay Science Colza oil bleaching through optimized acid activation of bentonite . A comparative study. Applied Clay Science, 42(3–4), 336–344. https://doi.org/10.1016/j.clay.2008.03.014

Garg, K. K., & Prasad, B. (2016). Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge. Journal of Environmental Chemical Engineering, 4(1), 178–190. https://doi.org/10.1016/j.jece.2015.11.012

Ge, D., Shi, W., Ren, L., Zhang, F., Zhang, G., Zhang, X., & Zhang, Q. (2006). Variation analysis of affinity-membrane model based on Freundlich adsorption. Journal of Chromatography A, 1114(1), 40–44. https://doi.org/10.1016/j.chroma.2006.02.026

Hebbar, R. S., Isloor, A. M., Prabhu, B., & Abdullah, M. (2018). Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite. Scientific Reports, 8(March). https://doi.org/10.1038/s41598-018-22837-1

Javed, S. H., Zahir, A., Khan, A., Afzal, S., & Mansha, M. (2018). Adsorption of Mordant Red 73 dye on acid activated bentonite: Kinetics and Thermodynamic study. Journal of Molecular Liquids, 254, 398–405. https://doi.org/10.1016/j.molliq.2018.01.100

Lee, S. (2015). Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies. Journal of Industrial and Engineering Chemistry, 34, 213–223. https://doi.org/10.1016/j.jiec.2015.11.014

Li, C., Tang, H., Duan, Y., Zhu, C., Zheng, Y., & Huang, T. (2018). Synthetic calcium-based adsorbents for gaseous mercury ( II ) adsorption from fl ue gas and study on their mercury adsorption mechanism. Fuel, 234(June), 384–391. https://doi.org/10.1016/j.fuel.2018.06.135

Mambrini, R. V, Saldanha, A. L. M., Ardisson, J. D., Helena, M., & Moura, F. C. C. (2013). Applied Clay Science Adsorption of sulfur and nitrogen compounds on hydrophobic bentonite. Applied Clay Science, 83–84, 286–293. https://doi.org/10.1016/j.clay.2013.08.030

Mansilla, A. Y., Lanfranconi, M., Alvarez, V. A., & Casalongué, C. A. (2018). Applied Clay Science Development and characterization of bentonite / wGLP systems. Applied Clay Science, 166(September), 159–165. https://doi.org/10.1016/j.clay.2018.09.023

Naswir, M., Arita, S., Hartati, W., Septiarini, L., Desfaournatalia, D., & Wibowo, Y. G. (2019). Activated Bentonite: Low Cost Adsorbent to Reduce Phosphor in Waste Palm Oil. International Journal of Chemistry, 11(2), 67. https://doi.org/10.5539/ijc.v11n2p67

Önal, M., Sarikaya, Y., Alemdaroǧlu, T., & Bozdoǧan, I. (2002). The effect of acid activation on some physicochemical properties of a bentonite. Turkish Journal of Chemistry, 26(3), 409–416.

Panda, A. K., Mishra, B. G., Mishra, D. K., & Singh, R. K. (2010). Colloids and Surfaces A : Physicochemical and Engineering Aspects Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363(1–3), 98–104. https://doi.org/10.1016/j.colsurfa.2010.04.022

Sanz-pérez, E. S., Arencibia, A., Sanz, R., & Frini-srasra, N. (2019). Applied Clay Science Amine grafting of acid-activated bentonite for carbon dioxide capture. Applied Clay Science, 180(April), 105195. https://doi.org/10.1016/j.clay.2019.105195

Sheta, A. S., Falatah, A. M., Al-Sewailem, M. S., Khaled, E. M., & Sallam, A. S. H. (2003). Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous and Mesoporous Materials, 61(1–3), 127–136. https://doi.org/10.1016/S1387-1811(03)00360-3

Sidhoum, D. A., Socías-viciana, M. M., Ureña-amate, M. D., Derdour, A., González-pradas, E., & Debbagh-boutarbouch, N. (2013). Applied Clay Science Removal of paraquat from water by an Algerian bentonite. Applied Clay Science, 83–84, 441–448. https://doi.org/10.1016/j.clay.2013.07.007

Smith, N. M. (2019). “Our gold is dirty, but we want to improve”: Challenges to addressing mercury use in artisanal and small-scale gold mining in Peru. Journal of Cleaner Production, 222, 646–654. https://doi.org/10.1016/j.jclepro.2019.03.076

Toor, M., Jin, B., Dai, S., & Vimonses, V. (2015). Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry, 21, 653–661. https://doi.org/10.1016/j.jiec.2014.03.033

Zheng, H., Liu, D., Zheng, Y., Liang, S., & Liu, Z. (2009). Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials, 167, 141–147. https://doi.org/10.1016/j.jhazmat.2008.12.093




DOI: https://doi.org/10.23955/rkl.v15i2.17784

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Muhammad Naswir, Yudha Gusti Wibowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURNAL REKAYASA KIMIA & LINGKUNGAN

Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA

 

PRINCIPAL CONTACT

Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.usk.ac.id, nasrular@usk.ac.id

 

SUPPORT CONTACT

Mirna Rahmah Lubis
E-mail: mirna@che.usk.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.usk.ac.id

 

VISITORS