Innovations in the Cement Industry: Advancing Towards Sustainable Concrete Production
Abstract
Keywords
Full Text:
PDFReferences
A. A. Shubbar, D. Al-Jumeily, A. J. Aljaaf, M. Alyafei, M. Sadique, Mustafina, J. (2020). Investigating the Mechanical and Durability Performance of Cement Mortar Incorporated Modified Fly Ash and Ground Granulated Blast Furnace Slag as Cement Replacement Materials, in: Developments in ESystems Engineering (DeSE). IEEE, Russia.
Ahmad, J., Zhou, Z., Usanova, K.I., Vatin, N.I., El-Shorbagy, M.A. (2022). A Step towards Concrete with Partial Substitution of Waste Glass (WG) in Concrete: A Review. Materials 15, 1–23. https://doi.org/10.3390/ma15072525
Arabi, N., Jauberthie, R., Chelghoum, N., Molez, L. (2015). Formation of C-S-H in calcium hydroxide-blast furnace slag-Quartz-water system In autoclaving conditions. Advances in Cement Research 27, 153–162. https://doi.org/10.1680/adcr.13.00069
Cicek, B., Martins, N.P., Brumaud, C., Habert, G., Plötze, M. (2020). A reverse engineering approach for low environmental impact earth stabilization technique, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/588/4/042058
Czop, M., Lazniewska-Piekarczyk, B. (2020). Use of slag from the combustion of solid municipal waste as a partial replacement of cement in mortar and concrete. Materials 13. https://doi.org/10.3390-/ma13071593
Dai, Z., Li, H., Zhao, W., Wang, X., Wang, H., Zhou, H., Yang, B. (2020). Multi-modified effects of varying admixtures on the mechanical properties of pervious concrete based on optimum design of gradation and cement-aggregate ratio. Construction and Building Material 233. https://doi.org/10.1016/j.conbuildmat.2019.117178
Faltin, B. (2022). Performance of Concrete formance of Concrete with Different Cement Finenesses and Nano-activators. University of Nebraska, Nebraska.
Galloway, B.D., Sasmaz, E., Padak, B. (2015). Binding of SO3 to fly ash components: CaO, MgO, Na2O and K2O. Fuel 145, 79–83. https://doi.org/10.1016/j.fuel.2014.12.046
Ghalandari, V., Iranmanesh, A. (2020). Energy and exergy analyses for a cement ball mill of a new generation cement plant and optimizing grinding process: A case study. Advanced Powder Technology 31, 1796–1810. https://doi.org/10.1016/j.apt.2020.02.013
He, Y., Qian, K., Lan, M., Peng, H. (2022). Mechanism and Assessment of the Pozzolanic Activity of Melting-Quenching Lithium Slag Modified with Mgo. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.4182734
Jifeng, G., Zhulin, L., C. L. Philip Chen, Tong Zhang, Lin Wang, Kaipeng, F. (2022). An Efficient Inspection System Based on Broad Learning: Nondestructively Estimating Cement Compressive Strength With Internal Factors. IEEE Transaction on Industrial Informatics 18, 3787–3798.
Mardani-Aghabaglou, A., Son, A.E., Felekoglu, B., Ramyar, K. (2017). Effect of Cement Fineness on Properties of Cementitious Materials Containing High Range Water Reducing Admixture. Journal of Green Building 12.
https://doi.org/10.3992/1552-6100.12.1.142
Markandeya, A., Shanahan, N., Gunatilake, D.M., Riding, K.A., Zayed, A. (2018). Influence of slag composition on cracking potential of slag-portland cement concrete. Construction and Building Materials 164, 820–829.
Nadezhda, R., Lyubomir, A., Sanchi, N. (2018). Synthesis and characterization of pectin/SiO2 hybrid materials. Journal of Solgel Science and Technology 85, 330–339.
Ofuyatan, O.M., Adeniyi, A.G., Ijie, D., Ighalo, J.O., Oluwafemi, J. (2020). Development of high-performance self compacting concrete using eggshell powder and blast furnace slag as partial cement replacement. Construction and Building Materials 256.
Penpichcha, K., Akkadath, A., Weerachart, T., Chai, J. (2019). Evaluation of compressive strength and resistance of chloride ingress of concrete using a novel binder from ground coal bottom ash and ground calcium carbide residue. Construction and Building Materials 214, 631–640.
Rahman, H., Maulana, A. (2023). Toward Green Concrete: Replacing Clinker with Trass materials to Produce Portland Pozzolan Cement (PPC). Indian J. Environmental Protection 43, 452–458. https://doi.org/https://www.e-ijep.co.in/43-5-452-458/
Rahman, H., Mulyani, M. (2023). Improve The Compressive Strength Using A Strength Improver Agent (SIA) In The Cement Industry in Indonesia. Jurnal Teknologi 85, 163–169. https://doi.org/10.11113-/jurnalteknologi.v85.19629
Rahman, H., Rahayu, D. (2021). Characteristics of Self Compacting Concrete (SCC) by the Silica Fume as Portland Cement Substitute. Al-Kimia 9, 115–123. https://doi.org/10.24252/al-kimiav9i2.21064
Rahman, H., Sagitha, A., Dyah Puspita, A., Puput Dwi, R., Salasa, A. (2021). Optimization of Gypsum Composition Against Setting Time And Compressive Strength In Clinker For PCC (Portland Composite Cement), in: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 1–8. https://doi.org/10.1088/1757-899x/1053/1/012116
Saly, F., Guo, L., Ma, R., Gu, C., Sun, W. (2018). Properties of Steel Slag and Stainless Steel Slag as Cement Replacement Materials: A Comparative Study. Cementitious Materials 33, 1444–1451.
Selma, K., Fadhila, A., Houcine, T., Dalila, B.H.C. (2017). X-ray fluorescence analysis of Portland cement and clinker for major and trace elements: accuracy and precision. Journal of the Australian Ceramic Society 53, 743–749.
Simoni, M., Hanein, T., Duvallet, T.Y., Jewell, R.B., Provis, J.L., Kinoshita, H. (2021). Producing cement clinker assemblages in the system: CaO-SiO2-Al2O3-SO3-CaCl2-MgO. Cement and Concrete Research 144, 106418. https://doi.org/10.1016/j.cemconres.2021.106418
Singh, S.B., Munjal, P., Thammishetti, N. (2015). Role of water/cement ratio on strength development of cement mortar. Journal of Building Engineering 4, 94–100. https://doi.org/10.1016/j.jobe.2015.09.003
Sivakrishna, A., Adesina, A., Awoyera, P.O., Kumar, K.R. (2020). Green concrete: A review of recent developments, in: Materials Today: Proceedings. Elsevier Ltd, 54–58. https://doi.org/10.1016/-j.matpr.2019.08.202
Tole, I., Delogu, F., Qoku, E., Habermel-Cwirzen, K., Cwirzen, A. (2022). Enhancement of pozzolanic activity of calcined clays by limestone powder addition. Construction and Building Materials 284, 1–11.
Vicenzi, E.P., Lam, T. (2017). Determination of Major, Minor, and Trace Elements in Jadeite using Scanning micro-X-ray Fluorescence. Microscopy and Microanalysis 23, 1008–1009. https://doi.org/10.1017/S1431927617005700
Yang, S., Duan, C., Xu, Z. (2023). Crush test method for determining compressive strength of mortar. Material Structure 56, 21. https://doi.org/10.1617/s11527-023-02113-z
Zunino, F., Scrivener, K. (2022). The influence of sulfate addition on hydration kinetics and C-S-H morphology of C3S and C3S/C3A systems. Cement and Concrete Research 160.
https://doi.org/10.1016/j.cemconres.2022.106930
DOI: https://doi.org/10.23955/rkl.v19i2.35460
Article Metrics
Abstract view : 29 timesPDF - 15 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Herliati Rahman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL REKAYASA KIMIA & LINGKUNGAN
Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA
PRINCIPAL CONTACT
Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.usk.ac.id, nasrular@usk.ac.id
SUPPORT CONTACT
Mirna Rahmah Lubis
E-mail: mirna@che.usk.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.usk.ac.id












