Phosphate Potential from Septic Tank in Surabaya City, Indonesia
Abstract
Abstract
Phosphate scarcity will occur if humans do not currently manage the phosphates available in nature with good management. Phosphorus rocks are a natural source of phosphates, whose availability in nature is dwindling due to the large demand for phosphates in the world, especially in agriculture. It is necessary to launch a renewal that involves the recovery of phosphates from fecal sludge. Fecal sludge contains a lot of nutrients that have accumulated from the food we eat. Due to the lack of sewage system distribution in Indonesia, phosphate recovery uses septic tank sludge that has been transported to the Fecal Sludge Treatment Plant. This is one of the potential resources. The purpose of this study was to see the potential (presence) of phosphates in domestic wastewater in Surabaya City, Indonesia. This research was carried out by accidental sampling and the measurement of total phosphate using a spectrophotometer, according to the APHA Method 45001-P standard. The initial characteristics of the sample consisted of liquid phases and solids that were brownish-black and smelly. The phosphate levels in fecal sludge are between 110.42 mg/L and 4572.64 mg/L, with an average value of 1016.77 mg/L.
Abstrak
Kelangkaan fosfat terjadi jika manusia saat ini tidak mengelola fosfat yang tersedia di alam dengan baik. Batuan fosfor adalah sumber fosfat alami, yang ketersediaannya di alam berkurang akibat besarnya permintaan fosfat di dunia, terutama di bidang pertanian. Sehingga diperlukan suatu inovasi baru yang melibatkan recovery fosfat dari lumpur tinja. Lumpur tinja mengandung banyak nutrisi yang terakumulasi dari makanan yang dikonsumsinya. Selain itu, dengan rendahnya sistem pengelolaan air limbah di Indonesia, recovery fosfat dapt dilakukan menggunakan lumpur tinja dari tangki septik yang telah diangkut ke Instalasi Pengolahan Lumpur Tinja (IPLT). Hal ini merupakan salah satu sumber daya yang potensial. Tujuan dari penelitian ini adalah untuk mengukur potensi (keberadaan) fosfat dalam air limbah domestik di Kota Surabaya, Indonesia. Penelitian ini dilakukan dengan pengambilan sampel secara accidental sampling dan pengukuran total fosfat menggunakan spektrofotometer, sesuai standar APHA Metode 45001-P. Karakteristik awal sampel terdiri dari fase cair dan padatan yang berwarna hitam kecoklatan dan berbau. Konsentrasi fosfat dalam lumpur tinja berkisar antara 110,42 mg/L dan 4572,64 mg/L, dengan nilai rata-rata sebesar 1016,77 mg/L.
Keywords
Full Text:
PDFReferences
Baker, A., Ceasar, S. A., Palmer, A. J., Paterson, J. B., Qi, W., Muench, S. P., & Baldwin, S. A. (2015). Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. Journal of Experimental Botany, 66(12), 3523–3540. https://doi.org/10.1093/jxb/erv210
BPS. (2021). Distribusi Persentase Rumah Tangga Menurut Kabupaten/Kota dan Penggunaan Fasilitas Tempat Buang Air Besar di Provinsi Jawa Timur 2020. Retrieved from https://jatim.bps.go.id/statictable/2021/09/14/2287/distribusi-persentase-rumah-tangga-menurut-kabupaten-kota-dan-penggunaan-fasilitas-tempat-buang-air-besar-di-provinsi-jawa-timur-2020-.html
CHEMetrics. (2017). Phosphate (reactive, ortho) - Stannous Chloride Method. Techincal Data Sheet.
Chrispim, M. C., Scholz, M., & Nolasco, M. A. (2019). Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. Journal of Environmental Management, 248, 109268. https://doi.org/10.1016/j.jenvman.2019.109268
Clabby, C. (2010). Does Peak Phosphorus Loom? Scientists make the case that easily accessible supplies of an essential element are being depleted. American Scientist, 98(4), 291–292. http://www.jstor.org/stable/27859533
Cordell, D., & White, S. (2015). Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security, 7(2), 337–350. https://doi.org/10.1007/s12571-015-0442-0
Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069–1076. https://doi.org/10.2166/wst.2009.045
DEFRA. (2008). Consultation on options for controls on phosphates in domestic laundry cleaning products in England. In: The Department for Environment, Food and Rural Affairs. Retrieved from https://webarchive.nationalarchives.gov.uk/ukgwa/20130822084033/http://www.defra.gov.uk/corporate/consult/phosphates/consultation.pdf
Drever, J. I. (1988). The geochemistry of natural waters (Vol. 437). Englewood Cliffs: Prentice hall.
Emsley, J. (1980). The Phosphorus Cycle. In The Natural Environment and the Biogeochemical Cycles: The Handbook of Environmental Chemistry. (pp. 147–167). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-24940-6_7
Gold, M., Dayer, P., Faye, M. C. A. S., Clair, G., Seck, A., Niang, S., Morgenroth, E., & Strande, L. (2016). Locally produced natural conditioners for dewatering of faecal sludge. Environmental Technology, 37(21), 2802–2814. https://doi.org/10.1080/09593330.2016.1165293
Grantham, J. (2012). Be persuasive. Be brave. Be arrested (if necessary). Nature, 491(7424), 303–303. https://doi.org/10.1038/491303a
Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. In U.S Geological Survey Water-Supply Paper 2254. https://doi.org/10.3133/wsp2254
Litke, D. W. (1999). Review of phosphorus control measures in the United States and their effects on water quality. U.S. Geological Survey Water-Resources Investigations Report 99-4007.
Özacar, M., & Şengil, I.A. (2003). Effect of Tannins on Phosphate Removal Using Alum. Turkish Journal of Engineering and Environmental Sciences, 27, 227-236.
Panasiuk, O. (2010). Phosphorus Removal and Recovery from Wastewater using Magnetite. Master of Science Thesis.
Ronteltap, M. (2009). Phosphorus recovery from source-separated urine through the precipitation of struvite. Doctoral Thesis, Swiss Federal Institute of Technology Zurich. Retrieved from https://www.research-collection.ethz.ch/handle/20.500.11850/27095
Soedjono, E. S., Saiful, S. O., Purnomo, A., Yuniarto, A., Hadi, W., dan Fitriani, N. (2020). Removal of organic materials and coliform of domestic wastewater through soils. Eco. Env. & Cons. 26 (4), pp. (1834-1838).
Standar Nasional Indonesia. Tata cara perencanaan tangki septik dengan pengolahan lanjutan (sumur resapan, bidang resapan, up flow filter, kolam sanitasi). SNI 2398:2017.
Sugiyono. (2009). Metode Penelitian Kuantitatif, Kualitatif dan R&D, Bandung: Alfabeta.
Wu, G., Zeng, W., Li, S., Jia, Z., & Peng, Y. (2021). Phosphorus recovery from waste activated sludge by sponge iron seeded crystallization of vivianite and process optimization with response surface methodology. Environmental Science and Pollution Research, 28(41). https://doi.org/10.1007/s11356-021-14561-7
DOI: https://doi.org/10.17969/rtp.v16i1.30556
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright© 2009-2023 | ISSN: 2085-2614 | EISSN: 2528-2654
Rona Teknik Pertanian is licensed under a Creative Commons Attribution 4.0 International License.
Published by:
Program Studi Teknik Pertanian, Fakultas Pertanian, Universitas Syiah Kuala
associated with Indonesia Society of Agricultural Engineering (ISAE) Aceh.
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Email: jronatp@usk.ac.id
Online Submissions & Guidelines | Editorial Policies | Contact | Statistics | Indexing | Citations