FT-IR Characterization and Phylogenetic Analysis of Patchouli Oil from West Aceh and Aceh Jaya using PCA and HCA

Khairun Nisak, Sandiana nariska, Khairi Suhud, Elly Sufriadi

Abstract


This study aims to characterize and compare the chemical composition of patchouli oil from various regions in Aceh, Indonesia, using Fourier-transform Infrared Spectroscopy (FT-IR) combined with Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). Patchouli oil samples from five distinct locations within West Aceh and Aceh Jaya Regencies were analyzed, focusing on the 1800-500 cm⁻¹ range. The FT-IR spectra revealed significant chemical markers, with notable absorption bands corresponding to aliphatic C-H, C=O, and C=C stretching vibrations. Multivariate analyses showed distinct clustering patterns, with four samples (POSM, POSP, POT, and POW) exhibiting high chemical similarity and clustering together, while one sample (POP) formed a separate cluster, indicating a lower degree of similarity. PCA analysis of the original spectra in the 1800-500 cm⁻¹ range yielded a cumulative PC1 and PC2 value of 89%. The HCA dendrogram highlighted a significant relative distance of 10 between the POP sample and the other four samples, indicating minimal relatedness, with the closest relatedness observed between POSM and POSP, having a relative distance of 1.1. This study demonstrates the effectiveness of FT-IR spectroscopy combined with PCA and HCA in distinguishing chemical profiles of patchouli oil from different regions, providing insights into geographical and varietal influences on oil composition. The findings are crucial for quality control and standardization in the patchouli oil industry, with further molecular studies recommended to corroborate and enhance understanding of genetic diversity among patchouli varieties in Aceh.


Keywords


Patchouli oil, phylogenetic Analysis, , chemometrics, FT-IR characterization

Full Text:

PDF

References


M. K. Swamy and U. R. Sinniah, “Patchouli (Pogostemon cablin Benth.): Botany, agrotechnology and biotechnological aspects,” Ind. Crops Prod., vol. 87, pp. 161–176, 2016, doi: 10.1016/j.indcrop.2016.04.032.

R. KHALILA, L. Fitri, and S. SUHARTONO, “Isolation and Characterization of Thermophilic Bacteria as Cellulolytic Enzyme Producer from the Hot Spring of Ie Seuum Aceh Besar, Indonesia,” Microbiol. Indones., vol. 14, no. 1, p. 4, Aug. 2020, doi: 10.5454/mi.14.1.4.

E. Sufriadi, Y. Aisyah, F. Harahap, Y. Fernando, and V. Mardina, “A method for aseptic culture of bud explants pogestemon cablin benth Var Tapak Tuan, Aceh, Indonesia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020, doi: 10.1088/1757-899X/725/1/012066.

T. N. C. Dantas, T. J. O. Cabral, A. A. Dantas Neto, and M. C. P. A. Moura, “Enrichmnent of patchoulol extracted from patchouli (Pogostemon cablin) oil by molecular distillation using response surface and artificial neural network models,” J. Ind. Eng. Chem., vol. 81, pp. 219–227, 2020, doi: 10.1016/j.jiec.2019.09.011.

E. Sufriadi, H. Meilina, A. A. Munawar, and R. Idroes, “Fourier Transformed Infrared (FTIR) spectroscopy analysis of patchouli essential oils based on different geographical area in Aceh,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1087, no. 1, p. 012067, 2021, doi: 10.1088/1757-899x/1087/1/012067.

R. K. Lal et al., “Patchouli (Pogostemon cablin (Blanco) Benth) essential oil yield stability with the unique aroma of ar-curcumene and genotype selection over the years,” Acta Ecol. Sin., vol. 43, no. 3, pp. 439–451, 2023, doi: 10.1016/j.chnaes.2021.08.016.

T. A. van Beek and D. Joulain, “The essential oil of patchouli, Pogostemon cablin: A review,” Flavour Fragr. J., vol. 33, no. 1, pp. 6–51, 2018, doi: 10.1002/ffj.3418.

P. Adhavan, G. Kaur, A. Princy, and R. Murugan, “Essential oil nanoemulsions of wild patchouli attenuate multi-drug resistant gram-positive, gram-negative and Candida albicans,” Ind. Crops Prod., vol. 100, pp. 106–116, 2017, doi: 10.1016/j.indcrop.2017.02.015.

M. K. Swamy and U. R. Sinniah, “A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance,” Molecules, vol. 20, no. 5, pp. 8521–8547, 2015, doi: 10.3390/molecules20058521.

S. E. Silva-Filho et al., “Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response,” Biomed. Pharmacother., vol. 84, pp. 1697–1704, 2016, doi: 10.1016/j.biopha.2016.10.084.

D. M. Cano-Reinoso et al., “Determination of α-guaiene and azulene chemical content in patchouli aromatic oil (Pogostemon cablin benth.) from indonesia by near-infrared spectroscopy,” Indian J. Nat. Prod. Resour., vol. 12, no. 2, pp. 256–262, 2021, doi: 10.56042/ijnpr.v12i2.24657.

C. P. Cornwell, “Notes on the composition of patchouli oil (Pogostemon cablin(Blanco) Benth.),” J. Essent. Oil Res., vol. 22, no. 4, pp. 360–364, 2010, doi: 10.1080/10412905.2010.9700346.

Halimursyadah, Syamsuddin, Nurhayati, Zuliana, and T. N. Phonna, “Interaction between type of plant growth promoting rhizobacteria and patchouli varieties on growth and yield of patchouli (Pogostemon cablin Benth.),” IOP Conf. Ser. Earth Environ. Sci., vol. 667, no. 1, 2021, doi: 10.1088/1755-1315/667/1/012073.

E. Sufriadi, H. Meilina, A. A. Munawar, S. Muhammad, and R. Idroes, “Identification of β-Caryophyllene (BCP) in Aceh patchouli essential oil (PEO) using gas chromatography-mass pectrophotometry (GC-MS),” IOP Conf. Ser. Earth Environ. Sci., vol. 667, no. 1, 2021, doi: 10.1088/1755-1315/667/1/012032.

T. Rajalahti and O. M. Kvalheim, “Multivariate data analysis in pharmaceutics: A tutorial review,” Int. J. Pharm., vol. 417, no. 1–2, pp. 280–290, 2011, doi: 10.1016/j.ijpharm.2011.02.019.

R. Vidal, Y. Ma, and S. S. Sastry, “Principal component analysis,” Interdiscip. Appl. Math., vol. 40, pp. 25–62, 2016, doi: 10.1007/978-0-387-87811-9_2.

J. Zhuo et al., “Patchouli alcohol protects against chronic unpredictable mild stress-induced depressant-like behavior through inhibiting excessive autophagy via activation of mTOR signaling pathway,” Biomed. Pharmacother., vol. 127, no. March, p. 110115, 2020, doi: 10.1016/j.biopha.2020.110115.

I. Bombarda, N. Dupuy, J. P. L. Van Da, and E. M. Gaydou, “Comparative chemometric analyses of geographic origins and compositions of lavandin var. Grosso essential oils by mid infrared spectroscopy and gas chromatography,” Anal. Chim. Acta, vol. 613, no. 1, pp. 31–39, 2008, doi: 10.1016/j.aca.2008.02.038.

T. K. T. Do, F. Hadji-Minaglou, S. Antoniotti, and X. Fernandez, “Authenticity of essential oils,” TrAC - Trends Anal. Chem., vol. 66, pp. 146–157, 2015, doi: 10.1016/j.trac.2014.10.007.

A. Krause, Y. Wu, R. Tian, and T. A. Van Beek, “Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil,” Planta Med., vol. 84, no. 12–13, pp. 953–963, 2018, doi: 10.1055/a-0605-3967.

D. F. Al Riza, S. Widodo, Y. A. Purwanto, and N. Kondo, “Combined fluorescence-transmittance imaging system for geographical authentication of patchouli oil,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 218, pp. 155–160, 2019, doi: 10.1016/j.saa.2019.04.009.

D. F. Al Riza, S. Widodo, Y. A. Purwanto, and N. Kondo, “Authentication of the geographical origin of patchouli oil using front-face fluorescence spectroscopy and chemometric analysis,” Flavour Fragr. J., vol. 34, no. 1, pp. 15–20, 2019, doi: 10.1002/ffj.3473.

K. Katerinopoulou, A. Kontogeorgos, C. E. Salmas, A. Patakas, and A. Ladavos, “Geographical origin authentication of agri-food products: Α review,” Foods, vol. 9, no. 4, pp. 1–16, 2020, doi: 10.3390/foods9040489.

Z. Fahmi, Mudasir, and A. Rohman, “Attenuated total reflectance-FTIR spectra combined with multivariate calibration and discrimination analysis for analysis of patchouli oil adulteration,” Indones. J. Chem., vol. 20, no. 1, pp. 1–8, 2020, doi: 10.22146/ijc.36955.

M. Mahboubifar, B. Hemmateenejad, and S. Yousefinejad, “Classification of edible oils based on ATR-FTIR spectral information during a long heating treatment,” J. AOAC Int., vol. 100, no. 2, pp. 351–358, 2017, doi: 10.5740/jaoacint.16-0412.

F. Yuliani, S. Riyanto, and A. Rohman, “Application of ftir spectra combined with chemometrics for analysis of candlenut oil adulteration,” Int. J. Appl. Pharm., vol. 10, no. 5, pp. 54–59, 2018, doi: 10.22159/ijap.2018v10i5.28372.

M. C. R. Diego, Y. A. Purwanto, S. Sutrisno, and I. W. Budiastra, “Determination of the Characteristics and Classification of Near-Infrared Spectra of Patchouli Oil (Pogostemon Cablin Benth.) from Different Origin,” IOP Conf. Ser. Earth Environ. Sci., vol. 147, no. 1, 2018, doi: 10.1088/1755-1315/147/1/012013.

J. Luts, F. Ojeda, R. Van de Plas Raf, B. De Moor, S. Van Huffel, and J. A. K. Suykens, “A tutorial on support vector machine-based methods for classification problems in chemometrics,” Anal. Chim. Acta, vol. 665, no. 2, pp. 129–145, 2010, doi: 10.1016/j.aca.2010.03.030.

H. Cen and Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends Food Sci. Technol., vol. 18, no. 2, pp. 72–83, 2007, doi: 10.1016/j.tifs.2006.09.003.

L. W. Hantao, H. G. Aleme, M. P. Pedroso, G. P. Sabin, R. J. Poppi, and F. Augusto, “Multivariate curve resolution combined with gas chromatography to enhance analytical separation in complex samples: A review,” Anal. Chim. Acta, vol. 731, pp. 11–23, 2012, doi: 10.1016/j.aca.2012.04.003.

X. Guo, R. Cai, S. Wang, B. Tang, Y. Li, and W. Zhao, “Subject Category : Subject Areas : Non-destructive geographical traceability of sea cucumber ( Apostichopus japonicus ) using near infrared spectroscopy combined with chemometric methods,” R. Soc. Chem., pp. 1–12, 2018.

H. Zhao and S. Ji, “Near Infrared Spectroscopy Evaluation and Regional Analysis of Chinese Pogostemon cablin and Agastache rugosa,” vol. 8, no. 1, pp. 1–12, 2018.

E. Sufriadi, R. Idroes, H. Meilina, A. A. Munawar, N. Lelifajri, and G. Indrayanto, “Partial Least Squares-Discriminant Analysis Classification for Patchouli Oil Adulteration Detection by Fourier Transform Infrared Spectroscopy in Combination with Chemometrics,” ACS Omega, 2023, doi: 10.1021/acsomega.3c00080.

R. C. Castro, D. S. M. Ribeiro, J. L. M. Santos, and R. N. M. J. Páscoa, “Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants,” Talanta, vol. 230, no. January, 2021, doi: 10.1016/j.talanta.2021.122373.

H. Y. Chien, A. T. Shih, and Y. M. Tseng, “Exploration of Fast Edible Oil Classification Using Infrared Spectrum, Machine Learning, and Chemometrics,” 2019 IEEE 10th Int. Conf. Aware. Sci. Technol. iCAST 2019 - Proc., pp. 1–6, 2019, doi: 10.1109/ICAwST.2019.8923564.

J. Koljonen, T. E. M. Nordling, and J. T. Alander, “A review of genetic algorithms in near infrared spectroscopy and chemometrics: Past and future,” J. Near Infrared Spectrosc., vol. 16, no. 3, pp. 189–197, 2008, doi: 10.1255/jnirs.778.

W. Li and Y. Huang, “A combined method of cross-correlation and PCA-based outlier algorithm for detecting structural damages on a jacket oil platform under random wave excitations,” Appl. Ocean Res., vol. 102, no. February, 2020, doi: 10.1016/j.apor.2020.102301.

S. N. Sharin et al., “Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning,” Food Chem., vol. 346, no. June 2020, p. 128654, 2021, doi: 10.1016/j.foodchem.2020.128654.

J. Camacho, A. K. Smilde, E. Saccenti, and J. A. Westerhuis, “All sparse PCA models are wrong, but some are useful. Part I: Computation of scores, residuals and explained variance,” Chemom. Intell. Lab. Syst., vol. 196, no. June 2019, p. 103907, 2020, doi: 10.1016/j.chemolab.2019.103907.

K. Janné, J. Pettersen, N. O. Lindberg, and T. Lundstedt, “Hierarchical principal component analysis (PCA) and projection to latent structure (PLS) technique on spectroscopic data as a data pretreatment for calibration,” J. Chemom., vol. 15, no. 4, pp. 203–213, 2001, doi: 10.1002/cem.677.

S. H. Soh, A. Jain, L. Y. Lee, S. K. Chin, C. Y. Yin, and S. Jayaraman, “Techno-economic and profitability analysis of extraction of patchouli oil using supercritical carbon dioxide,” J. Clean. Prod., vol. 297, p. 126661, 2021, doi: 10.1016/j.jclepro.2021.126661.

W. Song, H. Wang, P. Maguire, and O. Nibouche, “Nearest clusters based partial least squares discriminant analysis for the classification of spectral data,” Anal. Chim. Acta, vol. 1009, pp. 27–38, 2018, doi: 10.1016/j.aca.2018.01.023.

A. F. Mottese et al., “Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud,” Food Control, vol. 110, p. 107004, 2020, doi: https://doi.org/10.1016/j.foodcont.2019.107004.

H. K. T. de Andrade Silva et al., “Near infrared spectroscopy (NIRS) coupled with chemometric methods to identify and estimate taxonomic relationships of flies with forensic potential (Diptera: Calliphoridae and Sarcophagidae),” Acta Trop., vol. 235, p. 106672, 2022, doi: https://doi.org/10.1016/j.actatropica.2022.106672.

L. Syrjänen et al., “Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates,” BMC Biochem., vol. 11, no. 1, 2010, doi: 10.1186/1471-2091-11-28.




DOI: https://doi.org/10.24815/jocarbazon.v2i1.38859

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Carbazon

E-ISSN: 2988-5744

 

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).