Thermal and physical properties of CNF/glutaraldehyde-gelatin-based hydrogel
Abstract
The use of hydrogel as a wound dressing material is currently being massively developed. In addition to functioning to protect wounds, the use of hydrogel can also provide moisture in a measured manner and can be used as a drug delivery medium. In this study, hydrogel based on CNF and glutaraldehyde crosslinking agent and addition of gelatin were developed with various compositions 0.25; 0.5; 0.75 g to increase the ability of CNF and hydrogel to absorb water so that it is good to be applied as a wound dressing. The composting of the three materials aims to obtain a hydrogel with good thermal and physical properties. Based on physical character for a good ratio of swelling (666,62%) and degree of cross-linking (94%) on the hydrogel with a composition variation of 0.5 g of CNF addition. For the thermal stability of hydrogel var 2, TMax 591oC provides better thermal stability than var 1 and var 3. The morphology of hydrogel shows very small and evenly distributed pores on the surface which can absorb more water.
Keywords
References
Ramadhani, F.; Miratsi, L,: Humaeroh, Z.; Afriani. F. 2021. Kemampuan swelling hidrogel berbasis PVA/alginat. Proc. Natl. Colloq. Res. Commun. Serv. 149–151. DOI: 10.33019/snppm.v5i0.2727.
Khan, M. I. H.; An, X.; Dai, L.;Li, H.; Khan, A.; Ni, Y. 2019. Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery. Curr. Med. Chem. 26 (14) 2502–2513. DOI: 10.2174/0929867325666180927100817
Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. 2016. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116 (16) 9305-9374. DOI: 10.1021/acs.chemrev.6b00225.
Gu, F.; Wang, W.; Cai, Z.; Xue, F.; Jin, Y.; Zhu, J. Y. 2018. Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose 25 (5) 2861–2871. DOI: 10.1007/s10570-018-1765-8.
Chau, M.; Sriskandha, S. E.; Pichugin, D.; Thérien-Aubin, H.; Nykypanchuk, D.; Chauve, G.; Methot, M.; Bouchard, J.; Gang, O; Kumacheva, E. 2015. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Biomacromolecules 16 (8) 2455-2462. DOI:10.1021/acs.biomac.5b00701.
Xu, C.; Zhang, B.; Wang, X.; Cheng, F.; Xu, W.; Molino, P.; Bhacer, M.; Su, D.; Rosenau, T.; Willfor, S.; Wallace, G. 2018. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J. Mater. Chem. B 6 (43) 7066–7075. DOI:10.1039/c8tb01757c.
Xu, W.; Wang, X.; Sandler, N.; Willför, S.; Xu, C. 2018. Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustainable Chem. Eng. 6 (5) 5663–5680. DOI: 10.1021/acssuschemeng.7b03924.
Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, E. 2016. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39 76–88. DOI: 10.1016/j.copbio.2016.01.002.
Mahendra, I. P.; Wirjosentono, B.; Tamrin; Ismail, H.; Mendez, J. A. 2019. Thermal and morphology properties of cellulose nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB). Open Chem. 17 (1) 526–536. DOI: 10.1515/chem-2019-0063.
Erizal, E.; Pratiwi, E. W.; Perkasa, D. P.; Noviyantih, N.;
Abbas, B.; S. Sudirman, S. 2018. Imobilisasi propanolol hcl pada hidrogel poli(vinil alkohol)-natrium alginat dengan teknik radiasi. Jurnal Kimia dan Kemasan 40 (1) 47-56. DOI:10.24817/jkk.v40i1.2755.
Rocha-García, D; Betancourt-Mendiola, M. L; Wong-Arce, A.; Rosales-Mendoza, S.; Reyes-Hernandez, J.; Gonzalez-Ortega, O.; Palestino, G. 2018. Gelatin-based porous silicon hydrogel composites for the controlled release of tramadol. Eur. Polym. J. 108 485–497. DOI: 10.1016/j.eurpolymj.2018.09.033.
Saragih, S. W; Hardiyanti, R.; Mahendra, I. P. 2021. Antimicrobial activity of cellulose nanofiberbased hydrogels from abacÁ banana pseudo-stem fibre. Rasayan J. Chem. 14 (1) 578–583. DOI: 10.31788/RJC.2021.1415883.
Liu, W. C.; Wang, H. Y.; Lee, T. H.; Chung, R. J. 2019. Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. Mater. Sci. Eng. C 101 630–639. DOI: 10.1016/j.msec.2019.04.018.
Jayaramudu, T.; Ko, H. U.; Kim, H. C.; Kim, J. W.; Muthoka, R. M.; Kim, J. 2018. Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Mater. (Basel) 11 (9) 1615. DOI: 10.3390/ma11091615.
Tummala, G. P.; Rojas, R.; Mihranyan, A. 2016. Poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic applications: general characteristics and optical properties. J. Phys. Chem. B 120 (51) 13094–13101. DOI: 10.1021/acs.jpcb.6b10650
Takeno, H.; Inoguchi, H.; Hsieh, W. C. 2020. Mechanical and structural properties of cellulose nanofiber/poly(vinyl alcohol) hydrogels cross-linked by a freezing/thawing method and borax. Cellulose 27 (8) 4373–4387. DOI: 10.1007/s10570-020-03083-z.
Jiang, Y.; Xv, X.; Liu, D.; Yang, Z.; Zhang, Q.; Shi, H.; Zhao, G.; Zhou, J. 2019. Preparation of cellulose nanofiber-reinforced gelatin hydrogel and optimization for 3D printing applications. BioRes. 13 (3) 5909–5924. DOI: 10.15376/biores.13.3.5909-5924.
Saragih, S. W.; Wirjosentono, B.; Eddiyanto.; Meliana, Y. 2020. Influence of crosslinking agent on the morphology, chemical, crystallinity and thermal properties of cellulose nanofiber using steam explosion. Case Stud. Therm. Eng. 22 100740. DOI: 10.1016/j.csite.2020.100740.
Du, H.; Liu, W. ; Zhang, M.; Si, C.; Zhang, X.; Li, B. 2019. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209 130–144. DOI: 10.1016/j.carbpol.2019.01.020.
Gritsch, L.; Motta, F. L.; Contessi Negrini, N.; Yahia, L. H.; Farè, S. 2018. Crosslinked gelatin hydrogels as carriers for controlled heparin release. Mater. Lett. 228 375–378. DOI: 10.1016/j.matlet.2018.06.047.
Mu, S.; Liu, W.; Zhao, L.; Long, Y.; Gu, H. 2019. Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. Polym. 169 80–94. DOI: 10.1016/j.polymer.2019.02.047.
Li, T.; Lei, Y.; Guo, M and Yan, H. 2018. Crosslinked poly(vinyl alcohol) hydrogel microspheres containing dispersed fenofibrate nanocrystals as an oral sustained delivery system. Eur. Polym. J. 101 77–82. DOI: 10.1016/j.eurpolymj.2018.02.003.
Bai, H.; Li, Z.; Zhang, S.; Wang, W.; Dong, W. 2018. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. Polym. 200 468–476. DOI: 10.1016/j.carbpol.2018.08.041.
Nishino, T. 2017. Cellulose fiber/nanofiber from natural sources including waste-based sources. In: Baillie C, Jayasinghe R, editors. Green Compos. (2nd Ed.). Sawston: Woodhead Publishing. p. 19-38. DOI: 10.1016/B978-0-08-100783-9.00010-1.
Curvello, R.; Raghuwanshi, V. S.; Garnier, G. 2019. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 267 47–61. DOI: 10.1016/j.cis.2019.03.002.
Patel, Z. J.; Patel, M. C.; Chatrabhuji, P. M.; Patel, V. A.; Patel, D. R. 2020. Synthesis and characterization of cross-linked tri-polymers of poly acrylic acid as water thickening agents. Rasayan J. Chem. 13 (1) 333–338. DOI: 10.31788/RJC.2020.1315526.
Singh, S. K.; Kulkarni, S.; Kumar, V.; Vashistha, P. 2018. Sustainable utilization of deinking paper mill sludge for the manufacture of building bricks. J. Cleaner Prod. 204 321–333. DOI: 10.1016/j.jclepro.2018.09.028.
Sutay Kocabaş, D.; Erkoç Akçelik, M.; Bahçegül, E.; Özbek, H. N. 2021. Bulgur bran as a biopolymer source: Production and characterization of nanocellulose-reinforced hemicellulose-based biodegradable films with decreased water solubility. Ind. Crops Prod. 171 113847. DOI: 10.1016/j.indcrop.2021.113847.
Guo, J.; Guo, X.; Wang, S.; Yin, Y. 2016. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr. Polym. 135 248–255. DOI: 10.1016/j.carbpol.2015.08.068.
De France, K. J.; D’Emilio, E.; Cranston, E. D.; Geiger, T.; Nyström, G. 2020. Dual physically and chemically crosslinked regenerated cellulose-gelatin composite hydrogels towards art restoration. Carbohydr. Polym. 234 115885. DOI: 10.1016/j.carbpol.2020.115885.
DOI: 10.24815/jn.v23i1.29935
Refbacks
- There are currently no refbacks.