Thermal and physical properties of CNF/glutaraldehyde-gelatin-based hydrogel

ROSLIANA LUBIS, SRI WAHYUNA SARAGIH, WARDATUL HUSNA IRHAM, AJMAIN AJMAIN, SAISA SAISA

Abstract


The use of hydrogel as a wound dressing material is currently being massively developed. In addition to functioning to protect wounds, the use of hydrogel can also provide moisture in a measured manner and can be used as a drug delivery medium. In this study, hydrogel based on CNF and glutaraldehyde crosslinking agent and addition of gelatin were developed with various compositions 0.25; 0.5; 0.75 g to increase the ability of CNF and hydrogel to absorb water so that it is good to be applied as a wound dressing. The composting of the three materials aims to obtain a hydrogel with good thermal and physical properties. Based on physical character for a good ratio of swelling (666,62%) and degree of cross-linking (94%) on the hydrogel with a composition variation of 0.5 g of CNF addition. For the thermal stability of hydrogel var 2, TMax 591oC provides better thermal stability than var 1 and var 3. The morphology of hydrogel shows very small and evenly distributed pores on the surface which can absorb more water.


Keywords


hydrogel, wound dressing, composite, physical Properties, and degree of crosslinking

References


Ramadhani, F.; Miratsi, L,: Humaeroh, Z.; Afriani. F. 2021. Kemampuan swelling hidrogel berbasis PVA/alginat. Proc. Natl. Colloq. Res. Commun. Serv. 149–151. DOI: 10.33019/snppm.v5i0.2727.

Khan, M. I. H.; An, X.; Dai, L.;Li, H.; Khan, A.; Ni, Y. 2019. Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery. Curr. Med. Chem. 26 (14) 2502–2513. DOI: 10.2174/0929867325666180927100817

Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. 2016. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116 (16) 9305-9374. DOI: 10.1021/acs.chemrev.6b00225.

Gu, F.; Wang, W.; Cai, Z.; Xue, F.; Jin, Y.; Zhu, J. Y. 2018. Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose 25 (5) 2861–2871. DOI: 10.1007/s10570-018-1765-8.

Chau, M.; Sriskandha, S. E.; Pichugin, D.; Thérien-Aubin, H.; Nykypanchuk, D.; Chauve, G.; Methot, M.; Bouchard, J.; Gang, O; Kumacheva, E. 2015. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Biomacromolecules 16 (8) 2455-2462. DOI:10.1021/acs.biomac.5b00701.

Xu, C.; Zhang, B.; Wang, X.; Cheng, F.; Xu, W.; Molino, P.; Bhacer, M.; Su, D.; Rosenau, T.; Willfor, S.; Wallace, G. 2018. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J. Mater. Chem. B 6 (43) 7066–7075. DOI:10.1039/c8tb01757c.

Xu, W.; Wang, X.; Sandler, N.; Willför, S.; Xu, C. 2018. Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustainable Chem. Eng. 6 (5) 5663–5680. DOI: 10.1021/acssuschemeng.7b03924.

Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, E. 2016. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39 76–88. DOI: 10.1016/j.copbio.2016.01.002.

Mahendra, I. P.; Wirjosentono, B.; Tamrin; Ismail, H.; Mendez, J. A. 2019. Thermal and morphology properties of cellulose nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB). Open Chem. 17 (1) 526–536. DOI: 10.1515/chem-2019-0063.

Erizal, E.; Pratiwi, E. W.; Perkasa, D. P.; Noviyantih, N.;

Abbas, B.; S. Sudirman, S. 2018. Imobilisasi propanolol hcl pada hidrogel poli(vinil alkohol)-natrium alginat dengan teknik radiasi. Jurnal Kimia dan Kemasan 40 (1) 47-56. DOI:10.24817/jkk.v40i1.2755.

Rocha-García, D; Betancourt-Mendiola, M. L; Wong-Arce, A.; Rosales-Mendoza, S.; Reyes-Hernandez, J.; Gonzalez-Ortega, O.; Palestino, G. 2018. Gelatin-based porous silicon hydrogel composites for the controlled release of tramadol. Eur. Polym. J. 108 485–497. DOI: 10.1016/j.eurpolymj.2018.09.033.

Saragih, S. W; Hardiyanti, R.; Mahendra, I. P. 2021. Antimicrobial activity of cellulose nanofiberbased hydrogels from abacÁ banana pseudo-stem fibre. Rasayan J. Chem. 14 (1) 578–583. DOI: 10.31788/RJC.2021.1415883.

Liu, W. C.; Wang, H. Y.; Lee, T. H.; Chung, R. J. 2019. Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. Mater. Sci. Eng. C 101 630–639. DOI: 10.1016/j.msec.2019.04.018.

Jayaramudu, T.; Ko, H. U.; Kim, H. C.; Kim, J. W.; Muthoka, R. M.; Kim, J. 2018. Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Mater. (Basel) 11 (9) 1615. DOI: 10.3390/ma11091615.

Tummala, G. P.; Rojas, R.; Mihranyan, A. 2016. Poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic applications: general characteristics and optical properties. J. Phys. Chem. B 120 (51) 13094–13101. DOI: 10.1021/acs.jpcb.6b10650

Takeno, H.; Inoguchi, H.; Hsieh, W. C. 2020. Mechanical and structural properties of cellulose nanofiber/poly(vinyl alcohol) hydrogels cross-linked by a freezing/thawing method and borax. Cellulose 27 (8) 4373–4387. DOI: 10.1007/s10570-020-03083-z.

Jiang, Y.; Xv, X.; Liu, D.; Yang, Z.; Zhang, Q.; Shi, H.; Zhao, G.; Zhou, J. 2019. Preparation of cellulose nanofiber-reinforced gelatin hydrogel and optimization for 3D printing applications. BioRes. 13 (3) 5909–5924. DOI: 10.15376/biores.13.3.5909-5924.

Saragih, S. W.; Wirjosentono, B.; Eddiyanto.; Meliana, Y. 2020. Influence of crosslinking agent on the morphology, chemical, crystallinity and thermal properties of cellulose nanofiber using steam explosion. Case Stud. Therm. Eng. 22 100740. DOI: 10.1016/j.csite.2020.100740.

Du, H.; Liu, W. ; Zhang, M.; Si, C.; Zhang, X.; Li, B. 2019. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209 130–144. DOI: 10.1016/j.carbpol.2019.01.020.

Gritsch, L.; Motta, F. L.; Contessi Negrini, N.; Yahia, L. H.; Farè, S. 2018. Crosslinked gelatin hydrogels as carriers for controlled heparin release. Mater. Lett. 228 375–378. DOI: 10.1016/j.matlet.2018.06.047.

Mu, S.; Liu, W.; Zhao, L.; Long, Y.; Gu, H. 2019. Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. Polym. 169 80–94. DOI: 10.1016/j.polymer.2019.02.047.

Li, T.; Lei, Y.; Guo, M and Yan, H. 2018. Crosslinked poly(vinyl alcohol) hydrogel microspheres containing dispersed fenofibrate nanocrystals as an oral sustained delivery system. Eur. Polym. J. 101 77–82. DOI: 10.1016/j.eurpolymj.2018.02.003.

Bai, H.; Li, Z.; Zhang, S.; Wang, W.; Dong, W. 2018. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. Polym. 200 468–476. DOI: 10.1016/j.carbpol.2018.08.041.

Nishino, T. 2017. Cellulose fiber/nanofiber from natural sources including waste-based sources. In: Baillie C, Jayasinghe R, editors. Green Compos. (2nd Ed.). Sawston: Woodhead Publishing. p. 19-38. DOI: 10.1016/B978-0-08-100783-9.00010-1.

Curvello, R.; Raghuwanshi, V. S.; Garnier, G. 2019. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 267 47–61. DOI: 10.1016/j.cis.2019.03.002.

Patel, Z. J.; Patel, M. C.; Chatrabhuji, P. M.; Patel, V. A.; Patel, D. R. 2020. Synthesis and characterization of cross-linked tri-polymers of poly acrylic acid as water thickening agents. Rasayan J. Chem. 13 (1) 333–338. DOI: 10.31788/RJC.2020.1315526.

Singh, S. K.; Kulkarni, S.; Kumar, V.; Vashistha, P. 2018. Sustainable utilization of deinking paper mill sludge for the manufacture of building bricks. J. Cleaner Prod. 204 321–333. DOI: 10.1016/j.jclepro.2018.09.028.

Sutay Kocabaş, D.; Erkoç Akçelik, M.; Bahçegül, E.; Özbek, H. N. 2021. Bulgur bran as a biopolymer source: Production and characterization of nanocellulose-reinforced hemicellulose-based biodegradable films with decreased water solubility. Ind. Crops Prod. 171 113847. DOI: 10.1016/j.indcrop.2021.113847.

Guo, J.; Guo, X.; Wang, S.; Yin, Y. 2016. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr. Polym. 135 248–255. DOI: 10.1016/j.carbpol.2015.08.068.

De France, K. J.; D’Emilio, E.; Cranston, E. D.; Geiger, T.; Nyström, G. 2020. Dual physically and chemically crosslinked regenerated cellulose-gelatin composite hydrogels towards art restoration. Carbohydr. Polym. 234 115885. DOI: 10.1016/j.carbpol.2020.115885.


Full Text: PDF

DOI: 10.24815/jn.v23i1.29935

Refbacks

  • There are currently no refbacks.