On the dynamics of spring-pendulum system: an overview of configuration space and phase space



The dynamics of the spring-pendulum system with two degrees of freedom were studied. The motion of this system is restricted to be in a vertical plane so that the chosen generalized coordinates are the increased length of the spring  and the swing angle of pendulum . Hamiltonian of the system is obtained from the Legendre transformation of Lagrangian. Hamilton’s equation yields four differential equations that represent the dynamic of the system. The obtained results were visualized in configuration space and phase space trajectories. It is shown that generally the greater the initial swing angle, the more complex pattern will occur followed by the appearance of chaotic phenomena.


spring-pendulum, Hamilton’s equation, configuration space, phase space, chaotic phenomenon


Wijata, A.; Polczynski, K.; and Awrejcewicz, J. 2021. Theoretical and numerical analysis of regular one-side oscillations in a single pendulum system driven by a magnetic field. Mech. Sys. Sig. Proces. 150. DOI: 10.1016/j.ymssp.2020.107229.

Wojna, M.; Wijata, A.; Wasilewski, G.; Awrejcewicz, J. 2018. Numerical and experimental study of a double physical pendulum with magnetic interaction. J. Sound and Vibration. 430, 214-230. DOI: 10.1016/j.jsv.2018.05.032

Zhou, Z; Whiteman, C. 1996. Motions of a Double Pendulum. Nonlinear Anal. Theory, Meth. Appl. 26 (7). 0362-546X(94)60253-3.

Rega, G.; Settimi, V.; Lenci, S. 2020. Chaos in one-dimensional structural mechanics. Nonlinear Dynamics 102, 785-834. DOI: 10.1007/s11071-020-05849-3.

Avanço, R H.; Balthazar, J M.; Tusset, Â M.; Ribeiro, M A. 2021 Short comments on chaotic behavior of a double pendulum with two subharmonic frequencies and in the main resonance zone. ZAMM – J. Appl. Math. Mech. 101(12). DOI: 10.1002/zamm.202000197

Litak, G.; Borowiec, M.; Da̧bek, K. 2022. The transition to chaos of pendulum systems. Appl. Sci. 12(17) 8876. DOI: 10.3390/app12178876

Anli, E; Ozkol, I. 2010. Classical and Fractional-Order Analysis of the Free and Forced Double Pendulum. Eng. 2, 935-949. DOI:10.4236/eng.2010.212118

Izadgoshasb, I; Lim, Y. Y.; Tang, L. Padilla, R. V.; Tang, Z. S.; Sedighi, M. 2019. Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. J. En. Conver. Manag. 184, 559-570. DOI: 10.1016/j.enconman.2019.02.001

Wahyuni, S.; Irawati, E.; and Saefan, J. 2022. Mekanika Pegas-Pendulum Tergandeng dalam Tinjauan Lagrangian. Lontar Phys. Forum VI, 37-42. ISSN 2963-2587.

Rini, N.W.; Saefan, J.; Khoiri, N. 2023. Lagrangian Equation of Coupled Spring-Pendulum System. Phys. Com. 7 (1), 22-27. DOI: 10.15294/physcomm.v7i1.40771.

Bhattacharya, T.; Habib, S.; Jacobs, K. 2002. The Emergence of the Classical Dynamics in Quantum World. Los Alamos Sci. 27 110-125.

DOI: 10.48550/arXiv.quant-ph/0407096

Chauhan, V.; Srivastava, P,K. 2019. Computational Techniques Based on Runge-Kutta Method of Various Order and Type for Solving Differential Equations. Int. J. Math. Eng. Manag. Sci. 4 (2), 375–386. DOI: 10.33889/IJMEMS.2019.4.2-030

Dang, Q A. & Hoang, M T. 2020. Positive and elementary stable explicit nonstandard Rune-Kutta methods for a class of autonomous dynamical systems. Int. J. Comp. Math. 97(10), 2036-2054. DOI: 10.1080/00207160.2019.1677895

Alcin, M. 2020. The Runge Kutta-4 based 4D Hyperchaotic System Design for Secure Communication Applications. Chaos Theory and Appl. 2(1), 23-30.

Ranocha, H. 2020. On strong stability of explicit Runge-Kutta methods for nonlinear semibounded operators. IMA J. Num. Anal. 41(1), 654-682. DOI 10.1093/imanum/drz070

Mann, P. 2018 Lagrangian and Hamiltonian Dynamics. Oxford University Press. DOI: 10.1093/oso/9780198822370.001.0001

Amer, T.S.; Galal, A.A.; Abolila, A.F. 2021. On the motion of a triple pendulum system under the influence of excitation force and torque. Kuwait J. Sci. 48 (4), 1-17. DOI: 10.48129/kjs.v48i4.9915

Smirnov, A.S.; Smolnikov, B.A. 2021. Nonlinear oscillation modes of double pendulum. IOP Conf. Ser.: Mat. Sci. Eng. DOI10.1088/1757-899X/1129/1/012042.

Semkiv, O.M.; Shevchenko, S.M.; Slepuzhnikov, E.D. 2022 Geometrical modeling of the resonance of an oscillating spring depending from its parameters. Ukraine: Publisher Oleksandr Mykolayovych Tretyakov. ISBN 978-617-7827-34-3.

Bartolovic, N.; Gross, M.; Gunther, T. 2020 Phase Space Projection of Dynamical Systems. Eurographics Conf. Visualization (EuroVis). 39 (3), 253-264. DOI: 10.1111/cgf.13978

He, CH.; Amer, T.S.; Tian, D.; Abolila, A. F.; & Galal, A. A. 2022. Controlling the kinematics of a spring-pendulum system using an energy harvesting device. J. low freq. noise, vibr. active control. 41 (3), 1234–1257. DOI: 10.1177/14613484221077

Full Text: PDF

DOI: 10.24815/jn.v24i1.33247


  • There are currently no refbacks.