Analysis of VAE-LSTM Performance in Detecting Anomalies in Average Daily Temperature Data in Jakarta 2000-2023
Abstract
Climate change is happening worldwide, so global climate conditions are a major concern. In densely populated urban areas such as Jakarta, it is impossible to avoid the impacts of climate change, particularly the daily changes in air temperature. Therefore, a sophisticated and efficient approach is needed to find inconsistencies in daily air temperature data to provide critical information for sustainable urban planning and efforts to reduce risks. This research will combine two innovative approaches for hybrid anomaly detection. The method combines generative methods and can extract complex features, such as variational autoencoder (VAE), along with the temporal coding capabilities of long-short-term memory (LSTM), a type of Recurrent Neural Network (RNN). The data used in this study is the average daily air temperature data in Jakarta, obtained from the Kemayoran Meteorological Station and provide by the Meteorology, Climatology, and Geophysics Agency (BMKG). The data used is daily from April 2000 to December 2023. The threshold used to detect anomalies was 229.5, which resulted in excellent performance, namely F1-Score 0.985, Recall 1.000, and Precision 0.971. The VAE-LSTM model identified all dates with significant temperature anomalies, including January 21, 2014, February 22, 2014, November 12, 2014, and February 9, 2015. These dates are significant as they represent extreme weather events that can have severe implications for urban planning and climate change adaptation. The anomalies fall into the categories of point and contextual anomalies. This study contributes to climate research by providing evidence of the effectiveness of deep learning-based hybrid models in detecting complex and context-sensitive temperature anomalies.
Keywords
References
Borges, H.; Akbarinia, R.; and Masseglia, F. 2021. Anomaly detection in time series Transaction on Large-Scale Data- and Knowledge-Centeresed System L. Berlin: Springer Science and Business Media Deutchland GmbH. p. 46-62.
Kundu, A.; Sahu, A.; Serpedin, E; Davis, K. 2020. A3D: Attention-based auto-encoder anomaly detector for false data injection attacks. Electric Power Systems Research. 189 1-7. DOI:10.1016/j.epsr.2020.106795.
Liu, R.; Jiang, Y.; Lin, J. 2022. Forecasting the volatility of spesific risk for stock with LSTM. Procedia Computer Science. 202 111-114. DOI:10.1016/j.procs.2022.04.015.
Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. 2023. Climate Change 2023 Synthesis Report. Geneva: IPCC. DOI:10.59327/IPCC/AR6-9789291691647.
KLHK. 2020. Roadmap Nationally Determined Contribution (NDC) Adaptasi Perubahan Iklim. Jakarta (ID): Kementrian Lingkungan Hidup dan Kehutanan Republik Indonesia.
Siswanto, S.; van Oldenborgh, G.J.; van der Schrier, G.; Jilderda, R.; van den Hurk, B. 2015. Temperature, extreme precipitation, and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years. International Journal of Climatology. 36(9) 3207-3225. DOI:10.1002/joc.4548.
Wahyono, T.; Heryadi, Y.; Soeparno, H.; Abbas, B.S. 2020. Anomaly detection in climate data using stacked and densely connected long short-term memory model. Journal of Computers. 31(4) 42-53. DOI:10.3966/199115992020083104004.
Abir, F.F.; Chowdhury, M.E.H.; Tapotee, M.I.; Mushtak, A.; Khandakar, A.; Mahmud, S.; Hasan, A.; 2023. PCovNet+: a CNN-VAE anomaly detection framework with LSTM embeddings for smartwatch-based covid-10 detection. Engineering Applications of Artificial Intelligence. 122 1-15. DOI:10.1016/j.engappai.2023.106130.
Zhao, Y.; Zhang, X.; Shang Z.; Cao, Z. 2022. DA-LSTM-VAE: dual-stage attention-based LSTM-VAE for KPI anomaly detection. Entropy. 1-17. DOI:10.3390/e24111613.
Lin, S.; Clark, R.; Birke, R.; Schonborn, S.; Trigoni, N.; Roberts, S. 2020. Anomaly detection for time series using VAE-LSTM hybrid model. ICASSP. 4322-4326. DOI: 10.1109/ICASSP40776.2020.9053558.
Chandola, V.; Banerjee, A.; Kumar, V. 2009. Anomaly detection: a survey. ACM Computing Surveys. 14(3) 1-58. DOI:10.1145/1541880.1541882.
Fadholi, A. 2013. Uji perubahan rata-rata suhu udara dan curah hujan di Kota Pangkalpinang. Jurnal Matematika, Sains, dan Teknologi. 14(1) 11-25. DOI:10.33830/jmst.v14i1.309.2013.
Winarno, G.D.; Harianto, S.P.; Santoso, T. 2012. Klimatologi Pertanian. (Bandar Lampung: Pusaka Media)
Han, P.; Ellefsen, A.L.; Li, G.; Holmeset, F.T.; Zhang, H. 2021. Fault detection with LSTM-based variational autoencoder for maritime components. IEEE Sensors Journal. 21(19) 21903-21912. DOI: 10.1109/JSEN.2021.3105226
Niu, Z.; Yu, K.; Wu, X. 2020. LSTM based VAE-GAN fot time series anomaly detection. Sensors. 20(3738) 1-13. DOI:10.3390/s20133738.
Rizky H.; Nasution, Y.N.; Goejantoro, R. 2019. Analisis data curah hujan yang hilang menggunakan metode inversed square distance. Seminar Nasional Matematika, Statistika, dan Aplikasinya. Samarinda; p. 138-149.
Pamuji, F.Y.; Muslikh, A.R.; Arief, R.M.; Muti, D. 2024. Komparasi metode mean dan KNN imputation dalam mengatasi missing value pada dataset kecil. Jurnal Informatika Polinema. 10(2) 257-264. DOI: 10.33795/jip.v10i2.5031.
Yoseph, F.; Markku, H.; Howard, D. 2019. Outliers identification model in point-of-sales data using enhanced normal distribution method. IEEE. 72-78. DOI:10.1109/iCMLDE49015.2019.00024.
Maulana, A.; Fatichah. C.; Suciati, N. 2020. Facial inpainting pada citra wajah unaligned menggunakan generative adversarial network dengan feature reconstruction loss. Jurnal Ilmiah Teknologi Informasi. 18(2) 171-178. DOI: 10.12962/j24068535.v18i2.a1004.
Fallahnda, B. 2023. Kenapa Cuaca Hari Ini Dingin Sekali dan Penjelasan Lengkap BMKG. [Online]. Available at: https://tirto.id/kenapa-cuaca-hari-ini-dingin-sekali-dan-penjelasan-lengkap-bmkg-gNb7. [accessed 22 Apr. 2024].
Mutiarasari K. 2023. Faktor-faktor Penyebab Cuaca Dingin, Apa Saja?. Available at: https://news.detik.com/berita/d-6534269/faktor-faktor-penyebab-cuaca-dingin-apa-saja. [accessed 22 Apr. 2024].
Weather Spark. 2024. Cuaca November di Jakarta Indonesia. Available at: https://id.weatherspark.com/m/116847/11/Cuaca-Rata-rata-pada-bulan-November-in-Jakarta-Indonesia. [accessed 22 Apr. 2024].
DOI: 10.24815/jn.v25i2.41856
Refbacks
- There are currently no refbacks.



Universitas Syiah Kuala (recognizedly abbreviated as