Application of the Modified Apriori Algorithm to Determine Sales Patterns of Capacitor Products

Erna Sesarliana*, Fajri Rakhmat Umbara, Fatan Kasyidi

Abstract


The sales pattern becomes a benchmark for increasing product sales in a company. Sales patterns are one way that can be used to determine sales strategies by looking at how often an item is purchased simultaneously. The large number of daily transactions makes it difficult for companies to determine sales strategies. Data mining analyses extensive data to find relationships between data and can produce valuable information. Patterns of sales or consumer transactions look for relationships between one product and another in one transaction using the Association Rule method. The algorithm used is the Modified Apriori Algorithm. The data used is transaction data on capacitor products. The data used is 15513 transactions with the variables LotNo and Material Code. Processed with the Python programming language and Flask as the user interface, the minimum support used is 0.01, and the minimum confidence is 0.5, resulting in rules with the lowest reliability of 50% and the highest reliability of 100%. Based on the results of a comparison of the performance time of the Modified Apriori Algorithm and the Classic Apriori Algorithm in processing 15513 transaction data with the given conditions, namely minimum support = 0.02 and also minimum confidence = 0.5 with the time obtained by the Modified Apriori Algorithm for 5 minutes 5 seconds and the Classic Apriori Algorithm for 6 minutes 6 seconds

Keywords


capacitors, data mining, modified apriori algorithm

Full Text:

PDF

References


Almira, A., Suendri, & Ikhwan, A. (2021). Implementasi Data Mining Menggunakan Algoritma Fp-Growth pada Analisis Pola Pencurian Daya Listrik. Jurnal Informatika Universitas Pamulang, 6(2).

Chen, W., Yang, J., Wang, H. L., Shi, Y. F., Tang, H., & Li, G. H. (2018). Discovering Associations of Adverse Events with Pharmacotherapy in Patients with Non-Small Cell Lung Cancer Using Modified Apriori Algorithm. BioMed Research International, 2018. https://doi.org/10.1155/2018/1245616

Desyanti, & Wetri Febrina. (2020). Pemodelan Unified Modelling Language (UML) dalam Pembuatan Aplikasi Data Penduduk. SATIN - Sains dan Teknologi Informasi, 6(2). https://doi.org/10.33372/stn.v6i2.668

El-Sisi, A. (2010). Fast cryptographic privacy preserving association rules mining on the distributed homogenous database. International Arab Journal of Information Technology, 7(2).

Erwin, E. (2019). Analisis Market Basket Dengan Algoritma Apriori Dan FP-Growth. Jurnal Generic, 4(2).

Jollyta, D., Ramdhan, W., & Zarlis, M. (2020). Konsep Data Mining Dan Penerapan - Google Books. Dalam Konsep Data Mining Dan Penerapan.

Kaliappan, J., Sai, S. M., & Shaily Preetham, K. (2019). Weblog and retail industries analysis using a robust modified Apriori algorithm. International Journal of Innovative Technology and Exploring Engineering, 8(6).

Lewis, A., Zarlis, M., & Situmorang, Z. (2021). Penerapan Data Mining Menggunakan Task Market Basket Analysis Pada Transaksi Penjualan Barang di Ab Mart dengan Algoritma Apriori. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2). https://doi.org/10.30865/mib.v5i2.2934

Lingga, D. (2016). Penerapan Algoritma Apriori Dalam Memprediksi Persediaan Buku Pada Perpustakaan Sma Dwi Tunggal Tanjung Morawa. Majalah Ilmiah Informasi dan Teknologi Ilmiah, XI(1).

Marcoulides, G. A. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. Dalam Journal of the American Statistical Association (Vol. 100, Nomor 472). https://doi.org/10.1198/jasa.2005.s61

Ramzan, R., & Putro, B. E. (2022). Analisis Pola Pembelian Konsumen pada Transaksi Penjualan Menggunakan Teknik Association Rules dengan Algoritma Apriori (Studi Kasus: Ghiyas Cake & Bakery). Go-Integratif : Jurnal Teknik Sistem dan Industri, 3(01). https://doi.org/10.35261/gijtsi.v3i01.6416

Sianturi, F. A. (2018). PENERAPAN ALGORITMA APRIORI UNTUK PENENTUAN TINGKAT PESANAN. Jurnal Mantik Penusa, 2(1).

Turmudi Zy, A., Nugroho, A., Rivaldi, A., & Afriantoro, I. (2022). Analisis Sentimen Terhadap Pembobolan Data pada Twitter dengan Algoritma Naive Bayes. Jurnal Teknologi Informatika dan Komputer, 8(2). https://doi.org/10.37012/jtik.v8i2.1240

Widjaya, S. (2017). Sistem Penunjang Keputusan untuk Menentukan Barang Terlaris dengan Algoritma Apriori pada CV Calosa Global Indonesia. Journal of Information and Technology (J-INTECH), 5(2).

Wu, Y., & Zhang, J. (2020). Building the electronic evidence analysis model based on association rule mining and FP-growth algorithm. Dalam Soft Computing (Vol. 24, Nomor 11). https://doi.org/10.1007/s00500-019-04032-0




DOI: https://doi.org/10.24815/jr.v6i3.33718

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Riwayat: Educational of History and Humanities indexed by

sinta_logodoaj_logoDimensions_logoCROSSREF_logoROAD_logoPKP_Index_logoGoogle_Scholar_logogaruda_logoonesearch_logoBASE_logoWordcat_logo

___________________________________________________________
Riwayat: Educational of History and Humanities

E-ISSN 2775-5037
P-ISSN 2614-3917

Published by History Education Department, Faculty of Teacher Training and Education, Universitas Syiah Kuala, Province Aceh. Indonesia
W :https://jurnal.usk.ac.id/riwayat
E : riwayat@usk.ac.id

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.