Klasifikasi Kepribadian Karyawan Menggunakan Machine Learning

Gilang Ferdiansah, Imam Yuadi

Abstract


Pemahaman terhadap tipe kepribadian menjadi mutlak pada kondisi digitalisasi dan hybrid working. Tipe kepribadian yang umum dikenal saat ini adalah introver dan ekstrover. Organisasi yang tidak mampu memahami tipe kepribadian karyawan, akan berdampak pada penurunan motivasi dan kinerja karyawan. Salah satu cara mengklasifikasikan tipe kepribadian pegawai adalah dengan pendekatan machine learning. Evaluasi terhadap beberapa hasil pendekatan machine learning, akan memberikan model dengan kinerja terbaik yang mampu mengklasifikasikan tipe kepribadian. Model Naïve Bayes menjadi model terbaik pada klasfikasi tipe kepribadian ini dengan nilai accuracy sebesar 93,41%, lebih tinggi dibandingkan model lainnya. Penelitian ini diharapkan menambah wawasan ilmu pengetahuan pada human resources analitik dan memberikan informasi klasifikasi tipe kepribadian karyawan bagi organisasi.


Keywords


kepribadian;MachineLerning;NaïveBayes;RapidMiner

Full Text:

PDF

References


Barrick, M. R., Mount, M. K., & Judge, T. A. (2001). Personality and performance at the beginning of the new millennium: What do we know and where do we go next? International Journal of Selection and Assessment, 9(1–2), 9–30. https://doi.org/10.1111/1468-2389.00160

Cain, S. (2012). Quiet: The power of introverts in a world that can’t stop talking. Crown Publishing Group.

Costa, P. T., & McCrae, R. R. (1999). A five-factor theory of personality (Vol. 2). Guilford Press.

Han, J. W., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (3rd Edition). Morgan Kaufmann Publishers

Katiyar, S., Walia, H., & Kumar, S. (2020). Personality Classification System using Data Mining. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1020–1023. https://doi.org/10.1109/ICRITO48877.2020.9197803

Khan, A. S., Ahmad, H., Zubair, M., Khan, F., Arif, A., & Ali, H. (2020). Personality Classification from Online Text using Machine Learning Approach. International Journal of Advanced Computer Science and Applications, 11(3). https://doi.org/10.14569/IJACSA.2020.0110358

Khan, S., Amin, H., & Tahir, M. B. (2012). Impact of personality match/mismatch on employee level performance which ultimately affects organizational performance. Global Journal of Management and Business Research.

Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3

Kunte, A. V., & Panicker, S. (2019). Analysis of Machine Learning Algorithms for Predicting Personality: Brief Survey and Experimentation. 2019 Global Conference for Advancement in Technology (GCAT), 1–5. https://doi.org/10.1109/GCAT47503.2019.8978469

Ongore, O. (2014). A Study of Relationship between Personality Traits and Job Engagement. Procedia - Social and Behavioral Sciences, 141, 1315–1319. https://doi.org/10.1016/j.sbspro.2014.05.226

Serrano-Guerrero, J., Alshouha, B., Bani-Doumi, M., Chiclana, F., Romero, F. P., & Olivas, J. A. (2024). Combining machine learning algorithms for personality trait prediction. Egyptian Informatics Journal, 25, 100439. https://doi.org/10.1016/j.eij.2024.100439

Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2020). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18–38. https://doi.org/10.1016/j.ins.2015.11.037

Syaripudin, U., Zaenal, R., Duri, M. F. A., Firmansyah, E., & Rahman, A. (2019). Comparison between Naïve Bayes and certainty factor to predict big five personality. Journal of Physics: Conference Series, 1402(7), 077030. https://doi.org/10.1088/1742-6596/1402/7/077030

Talasbek, A., Serek, A., Zhaparov, M., Yoo, S.-M., Kim, Y.-K., & Jeong, G.-H. (2020). Personality Classification Experiment by Applying k-Means Clustering. International Journal of Emerging Technologies in Learning (IJET), 15(16), 162. https://doi.org/10.3991/ijet.v15i16.15049

Young, H. R., Glerum, D. R., Wang, W., & Joseph, D. L. (2018). Who are the most engaged at work? A meta‐analysis of personality and employee engagement. Journal of Organizational Behavior, 39(10), 1330–1346. https://doi.org/10.1002/job.2303




DOI: https://doi.org/10.24815/jr.v8i4.49440

Article Metrics

Abstract view : 36 times
PDF - 18 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

__________________________________________________________

Riwayat: Educatioanl Journal of History and Humanities


Published: Departemen of History Education, Faculty of Teacher Training and Education, Universitas Syiah Kuala, Provinsi Aceh. Indonesia

Situs web: https://jurnal.usk.ac.id/riwayat
Email: riwayat@usk.ac.id

Lisensi Creative Commons
Karya ini dilisensikan di bawah Lisensi Internasional Creative Commons Atribusi-BerbagiSerupa 4.0.