Klasifikasi Kepribadian Karyawan Menggunakan Machine Learning
Abstract
Pemahaman terhadap tipe kepribadian menjadi mutlak pada kondisi digitalisasi dan hybrid working. Tipe kepribadian yang umum dikenal saat ini adalah introver dan ekstrover. Organisasi yang tidak mampu memahami tipe kepribadian karyawan, akan berdampak pada penurunan motivasi dan kinerja karyawan. Salah satu cara mengklasifikasikan tipe kepribadian pegawai adalah dengan pendekatan machine learning. Evaluasi terhadap beberapa hasil pendekatan machine learning, akan memberikan model dengan kinerja terbaik yang mampu mengklasifikasikan tipe kepribadian. Model Naïve Bayes menjadi model terbaik pada klasfikasi tipe kepribadian ini dengan nilai accuracy sebesar 93,41%, lebih tinggi dibandingkan model lainnya. Penelitian ini diharapkan menambah wawasan ilmu pengetahuan pada human resources analitik dan memberikan informasi klasifikasi tipe kepribadian karyawan bagi organisasi.
Keywords
Full Text:
PDFReferences
Barrick, M. R., Mount, M. K., & Judge, T. A. (2001). Personality and performance at the beginning of the new millennium: What do we know and where do we go next? International Journal of Selection and Assessment, 9(1–2), 9–30. https://doi.org/10.1111/1468-2389.00160
Cain, S. (2012). Quiet: The power of introverts in a world that can’t stop talking. Crown Publishing Group.
Costa, P. T., & McCrae, R. R. (1999). A five-factor theory of personality (Vol. 2). Guilford Press.
Han, J. W., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (3rd Edition). Morgan Kaufmann Publishers
Katiyar, S., Walia, H., & Kumar, S. (2020). Personality Classification System using Data Mining. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1020–1023. https://doi.org/10.1109/ICRITO48877.2020.9197803
Khan, A. S., Ahmad, H., Zubair, M., Khan, F., Arif, A., & Ali, H. (2020). Personality Classification from Online Text using Machine Learning Approach. International Journal of Advanced Computer Science and Applications, 11(3). https://doi.org/10.14569/IJACSA.2020.0110358
Khan, S., Amin, H., & Tahir, M. B. (2012). Impact of personality match/mismatch on employee level performance which ultimately affects organizational performance. Global Journal of Management and Business Research.
Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3
Kunte, A. V., & Panicker, S. (2019). Analysis of Machine Learning Algorithms for Predicting Personality: Brief Survey and Experimentation. 2019 Global Conference for Advancement in Technology (GCAT), 1–5. https://doi.org/10.1109/GCAT47503.2019.8978469
Ongore, O. (2014). A Study of Relationship between Personality Traits and Job Engagement. Procedia - Social and Behavioral Sciences, 141, 1315–1319. https://doi.org/10.1016/j.sbspro.2014.05.226
Serrano-Guerrero, J., Alshouha, B., Bani-Doumi, M., Chiclana, F., Romero, F. P., & Olivas, J. A. (2024). Combining machine learning algorithms for personality trait prediction. Egyptian Informatics Journal, 25, 100439. https://doi.org/10.1016/j.eij.2024.100439
Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2020). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18–38. https://doi.org/10.1016/j.ins.2015.11.037
Syaripudin, U., Zaenal, R., Duri, M. F. A., Firmansyah, E., & Rahman, A. (2019). Comparison between Naïve Bayes and certainty factor to predict big five personality. Journal of Physics: Conference Series, 1402(7), 077030. https://doi.org/10.1088/1742-6596/1402/7/077030
Talasbek, A., Serek, A., Zhaparov, M., Yoo, S.-M., Kim, Y.-K., & Jeong, G.-H. (2020). Personality Classification Experiment by Applying k-Means Clustering. International Journal of Emerging Technologies in Learning (IJET), 15(16), 162. https://doi.org/10.3991/ijet.v15i16.15049
Young, H. R., Glerum, D. R., Wang, W., & Joseph, D. L. (2018). Who are the most engaged at work? A meta‐analysis of personality and employee engagement. Journal of Organizational Behavior, 39(10), 1330–1346. https://doi.org/10.1002/job.2303
DOI: https://doi.org/10.24815/jr.v8i4.49440
Article Metrics
Abstract view : 36 timesPDF - 18 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.
__________________________________________________________
Riwayat: Educatioanl Journal of History and Humanities
Published: Departemen of History Education, Faculty of Teacher Training and Education, Universitas Syiah Kuala, Provinsi Aceh. Indonesia
Situs web: https://jurnal.usk.ac.id/riwayat
Email: riwayat@usk.ac.id

Karya ini dilisensikan di bawah Lisensi Internasional Creative Commons Atribusi-BerbagiSerupa 4.0.
Riwayat: Educational Journal of History and Humanities