The effect of β-carotene supplementation above requirement on the production and reproduction performance of female sheep and goats - A mini review

Osman Ahmed, Abubeker Hassen, Khoboso Lehloenya

Abstract


The high rate of metabolic activity during breeding, pregnancy, parturition and lactation may lead to oxidative stress in sheep and goats. Antioxidant supplementation is proposed as a therapy for encountering resultant stress. In animals, β-carotene functions mainly as pro-vitamin A and as a scavenger of free radicals, especially against singlet-state oxygen. This raises the question of whether supplementing β-carotene as an antioxidant above the vitamin A requirement is beneficial. While a number of studies have been conducted on the effect of β-carotene supplementation as a tool to improve the production and reproduction performance of female goats and sheep, the findings are inconsistent. Some of the main reasons for this inconsistency could be attributed to the variation in the amount of β-carotene supplemented, the amount of β-carotene in the animal diet and the difference in the animal requirement for β-carotene. The objective of this review was to determine the effects of β-carotene supplementation on the production and reproductive performance of female sheep and goats fed on a diet deficient or not deficient in β-carotene. Data were extracted from peer-reviewed articles that were searched in the Web of Science, Google Scholar and Scopus databases. Thirteen peer-reviewed published articles were found on the subject under review. We estimated the animal requirement for β-carotene, the amount of β-carotene provided to the animal in the diet and the amount of β-carotene supplementation used in each study. These estimations were made to indicate whether the diet fulfilled the animal's requirement for β-carotene or not. The review revealed that β-carotene supplementation enhances the production and reproduction performance of the sheep when fed on a carotene-deficient diet. Additionally, β-carotene supplementation may increase the levels of some hormones such as progesterone in sheep and goats when fed on a diet that fulfils their requirements of β-carotene. However, the supplementation of β-carotene above the requirements seems to not affect the production and reproduction parameters such as body weight, milk production, estrus parameters, conception rate, pregnancy rate, and litter size. In conclusion, while β-carotene supplementation is essential for female sheep and goats fed β-carotene-deficient diets to attain optimal production and reproductive performance, supplementing β-carotene above the requirements does not appear to provide any further benefits to their overall performance.


Full Text:

PDF

References


Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A. & Gupta, S. 2012. The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology, 10: 49.

Agena, R., De Jesús Cortés-Sánchez, A., Hernández-Sánchez, H. & Jaramillo-Flores, M. E. 2023. Pro-apoptotic activity of bioactive compounds from seaweeds: promising sources for developing novel anticancer drugs. Marine Drugs, 21: 182.

Ames, B. N., Shigenaga, M. K. & Hagen, T. M. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 90: 7915-7922.

Arellano-Rodriguez, G., Meza-Herrera, C., Rodriguez-Martinez, R., Velazquez-Mendez, G., Mellado, M., Salinas, H., Perez-Razo, M. & Sanchez, F. 2007. Short-term betacarotene supplementation positively affects ovarian follicular development and ovulation rate in goats. Journal of Applied Animal Research, 32: 177-180.

Arellano‐Rodriguez, G., Meza‐Herrera, C., Rodriguez‐Martinez, R., Dionisio‐Tapia, R., Hallford, D., Mellado, M. & Gonzalez‐Bulnes, A. 2009. Short‐term intake of β‐carotene‐supplemented diets enhances ovarian function and progesterone synthesis in goats. Journal of animal physiology and animal nutrition, 93: 710-715.

Arizmendi-Maldonado, D., Mcdowell, L., Sinclair, T., Mislevy, P., Martin, F. & Wilkinson, N. 2003. α-Tocopherol and β-carotene concentrations in tropical grasses as affected by increasing daylength. Communications in soil science and plant analysis, 34: 519-530.

Bayr, H. 2005. Reactive oxygen species. Critical Care Medicine, 33: S498-S501.

Bendich, A. 2001. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids institute of medicine washington, DC: National Academy Press, 2000 ISBN: 0-309-06935-1. Elsevier.

Britton, G. & Khachik, F. 2009. Carotenoids in food. In: Carotenoids. Springer, 45-66.

Brozos, C., Kiossis, E., Fthenakis, G., Tsousis, G. & Boscos, C. 2007. Supplementation of lactating ewes with a glucogenic preparation or β-carotene in mid-to late lactation, on subsequent milk yield and luteinizing hormone secretion. Canadian journal of animal science, 87: 185-190.

Castillo, C., Hernandez, J., Bravo, A., Lopez-Alonso, M., Pereira, V. & Benedito, J. 2005. Oxidative status during late pregnancy and early lactation in dairy cows. The Veterinary Journal, 169: 286-292.

Celi, P. 2011. Biomarkers of oxidative stress in ruminant medicine. Immunopharmacology and Immunotoxicology, 33: 233-240.

Celi, P., Di Trana, A. & Quaranta, A. 2008. Metabolic profile and oxidative status in goats during the peripartum period. Animal Production Science, 48: 1004-1008.

Combs Jr, G. F. & Mcclung, J. P. 2017. Chapter 6 - Vitamin A. In: The Vitamins (Fifth Edition). Academic Press, 109-159.

Desmarchelier, C. & Borel, P. 2017. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends in Food Science & Technology.

Di Trana, A., Celi, P., Claps, S., Fedele, V. & Rubino, R. 2006. The effect of hot season and nutrition on the oxidative status and metabolic profile in dairy goats during mid lactation. Animal Science, 82: 717-722.

Diplock, A. T. 1995. Safety of antioxidant vitamins and beta-carotene. The American journal of clinical nutrition, 62: 1510S-1516S.

Drackley, J. K. 1999. Biology of dairy cows during the transition period: The final frontier? Journal of dairy science, 82: 2259-2273.

Fernando, P. D. S. M., Ko, D. O., Piao, M. J., Kang, K. A., Herath, H. M. U. L. & Hyun, J. W. 2024. Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems. Molecular Medicine Reports, 30: 1-10.

Fiorelli, S. K. A., Vianna, L. M., Oliveira, C. a. B. D., Fiorelli, R. K. A., Barros, B. C. S. & Almeida, C. R. D. 2014. The effects of supraphysiological supplementation of b-carotene in spontaneously hypertensive rats (SHR and SHR-sp). Revista do Colégio Brasileiro de Cirurgiões, 41: 351-355.

Forman, H. J. & Zhang, H. 2021. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20: 689-709.

Gardela, J., Ruiz-Conca, M., Palomares, A., Olvera-Maneu, S., García-Calvo, L., López-Béjar, M., Martínez-Pastor, F. & Álvarez-Rodríguez, M. 2023. Effect of Honey, Coenzyme Q10, and β-Carotene/α-Tocopherol as Novel Additives in Rabbit-Sperm Cryopreservation Extender. Animals, 13: 2392.

Gore, D. L. M. 2016. Effect of β-carotene supplementation on oestrous synchronisation and milk production of Saanen goats. University of Pretoria.

Green, A. S. & Fascetti, A. J. 2016. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species. The Scientific World Journal, 2016.

Jozwik, A., Bagnicka, E., Strzalkowska, N., Sliwa-Jozwik, A., Horbanczuk, K., Cooper, R. G., Pyzel, B., Krzyzewski, J., Swiergiel, A. H. & Horbanczuk, J. O. 2010. The oxidative status of milking goats after per os administration of N-acetylcysteine. Animal Science Papers and Reports, 2.

Juan, C. A., Pérez De La Lastra, J. M., Plou, F. J. & Pérez-Lebeña, E. 2021. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22: 4642.

Kamiloğlu, N. N., Beytut, E., Güven, A. & Altinsaat, Ç. 2006. Changes in the erythrocyte anti-oxidant system of offspring of dams treated with Vitamin A and β-carotene during gestation. Small Ruminant Research, 65: 142-148.

Kopsell, D. A. & Kopsell, D. E. 2010. Carotenoids in vegetables: Biosynthesis, occurrence, impacts on human health, and potential for manipulation. In: Bioactive Foods in Promoting Health. Elsevier, 645-662.

Köse, M., Kırbaș, M., Dursun, Ș. & Bayrıl, T. 2013. The effect of injections of β-carotene or vitamin E+ Selenium on fertility in ewes in anestrus season. Yüzüncü yıl Üniversitesi Veteriner Fakültesi Dergisi, 24: 83-86.

López-Flores, N., Meza-Herrera, C., Galán-Soldevilla, C., Bautista-Rodriguez, D., Veliz-Deras, F., Arellano-Rodriguez, G., García-De La Peña, C., Rosales-Nieto, C. & Macías-Cruz, U. 2018. The key role of targeted betacarotene supplementation on endocrine and reproductive outcomes in goats: Follicular development, ovulation rate and the GH-IGF-1 axis. Small Ruminant Research, 163: 29-33.

Lotfollahzadeh, S., Zakian, A., Tehrani-Sharif, M. & Watson, D. G. 2016. Assessment the alterations of some biochemical parameters in Afshari sheep with possible metabolic disorders. Small Ruminant Research, 145: 58-64.

Lykkesfeldt, J. & Svendsen, O. 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. The Veterinary Journal, 173: 502-511.

Meza-Herrera, C., Reyes-Avila, J., Tena-Sempere, M., Veliz-Deras, F., Macias-Cruz, U., Rodriguez-Martinez, R. & Arellano-Rodriguez, G. 2014. Long-term betacarotene supplementation positively affects serum triiodothyronine concentrations around puberty onset in female goats. Small Ruminant Research, 116: 176-182.

Meza-Herrera, C., Vargas-Beltran, F., Tena-Sempere, M., González-Bulnes, A., Macias-Cruz, U. & Veliz-Deras, F. 2013a. Short-term beta-carotene-supplementation positively affects ovarian activity and serum insulin concentrations in a goat model. Journal of endocrinological investigation, 36: 185-189.

Meza-Herrera, C. A., Hernández-Valenzuela, L. C., González-Bulnes, A., Tena-Sempere, M., Abad-Zavaleta, J., Salinas-Gonzalez, H., Mellado, M. & Veliz-Deras, F. 2011. Long-term betacarotene-supplementation enhances serum insulin concentrations without effect on the onset of puberty in the female goat. Reproductive biology, 11: 236-249.

Meza-Herrera, C. A., Pacheco-Alvarez, P., Castro, O. E., Macias-Cruz, U., Avendaño-Reyes, L., Mellado, M., Veliz-Deras, F. G., Contreras-Villarreal, V., Abad-Zavaleta, J. & Rodriguez-Martinez, R. 2017. Beta-carotene supplementation positively affects selected blood metabolites across time around the onset of puberty in goats. Czech Journal of Animal Science, 62: 22-31.

Meza-Herrera, C. A., Vargas-Beltran, F., Vergara-Hernandez, H. P., Macias-Cruz, U., Avendaño-Reyes, L., Rodriguez-Martinez, R., Arellano-Rodriguez, G. & Veliz-Deras, F. G. 2013b. Betacarotene supplementation increases ovulation rate without an increment in LH secretion in cyclic goats. Reproductive biology, 13: 51-57.

Miller, J., Brzezinska-Slebodzinska, E. & Madsen, F. 1993. Oxidative stress, antioxidants, and animal function. Journal of dairy science, 76: 2812-2823.

Nagarajan, J., Ramanan, R. N., Raghunandan, M. E., Galanakis, C. M. & Krishnamurthy, N. P. 2017. Chapter 8 - Carotenoids. In: Galanakis, C. M. (ed.) Nutraceutical and Functional Food Components. Academic Press, 259-296.

Niki, E., Noguchi, N., Tsuchihashi, H. & Naohiro, G. 1995. Interaction among vitamin C, vitamin E, and 13-carotene13. Am J Clin Nutr, 62: I322S-6.

Noguchi, N., Saito, Y. & Niki, E. 2023. Actions of thiols, persulfides, and polysulfides as free radical scavenging antioxidants. Antioxidants & Redox Signaling, 39: 728-743.

NRC. 2007. Nutrient requirements of small ruminants. Washington, DC: National Academy Press.

Ognik, K., Patkowski, K., Gruszecki, T. & Kostro, K. 2015. Redox status in the blood of ewes in the perinatal period and during lactation. Bull Vet Inst Pulawy, 59: 557-561.

Osakwe, I., Steingass, H. & Drochner, W. 2004. Daniellia oliveri as a fodder tree for small ruminant and the interaction of its tannin with ruminal ammonia. Nigerian Journal of Animal Production, 31: 56-64.

Paiva, S. A. & Russell, R. M. 1999. β-carotene and other carotenoids as antioxidants. Journal of the American college of nutrition, 18: 426-433.

Palozza, P., Calviello, G., Serini, S., Maggiano, N., Lanza, P., Ranelletti, F. O. & Bartoli, G. M. 2001. β-Carotene at high concentrations induces apoptosis by enhancing oxy-radical production in human adenocarcinoma cells. Free Radical Biology and Medicine, 30: 1000-1007.

Peirce, A. 1954. The effect of intake of carotene on reproduction in sheep. Australian Journal of Agricultural Research, 5: 470-483.

Pryor, W. A., Stahl, W. & Rock, C. L. 2000. Beta carotene: from biochemistry to clinical trials. Nutrition Reviews, 58: 39-53.

Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S. & Dhama, K. 2014. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed research international, 2014.

Rehman, R. & Azhar, A. 2024. Oxidative stress, mechanisms of subfertility, and reproductive disorders in females. In: Fundamental Principles of Oxidative Stress in Metabolism and Reproduction. Elsevier, 185-200.

Ribeiro, D., Freitas, M., Silva, A. M., Carvalho, F. & Fernandes, E. 2018. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food and Chemical Toxicology, 120: 681-699.

Salem, A., El-Shahawy, N. & Soliman, I. 2015. Effect of beta-carotene injection on estrus, vitamin A and estradiol-17-β concentrations in pubertal Farafra ewe lambs. Egyptian J. Anim. Prod, 52: 123-128.

Siems, W., Salerno, C., Crifò, C., Sommerburg, O. & Wiswedel, I. 2009. β-Carotene degradation products–formation, toxicity and prevention of toxicity. In: Food factors for health promotion. Karger Publishers, 75-86.

Sies, H. 1997. Oxidative stress: oxidants and antioxidants. Experimental physiology, 82: 291-295.

Sies, H., Berndt, C. & Jones, D. 2017. Oxidative stress. annu. rev. Biochem.

Singh, R. V. & Sambyal, K. 2022. An overview of β-carotene production: Current status and future prospects. Food Bioscience, 47: 101717.

Smith, T. A. 1998. Carotenoids and cancer: prevention and potential therapy. British journal of biomedical science, 55: 268.

Stahl, W. & Sies, H. 2005. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1740: 101-107.

Stier, A., Reichert, S., Massemin, S., Bize, P. & Criscuolo, F. 2012. Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Frontiers in zoology, 9: 37.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. & Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39: 44-84.

Woutersen, R., Wolterbeek, A., Appel, M., Berg, H. V. D., Goldbohm, R. & Feron, V. 1999. Safety evaluation of synthetic β-carotene. Critical reviews in toxicology, 29: 515-542.

Yang, H., Xie, Y., Yang, D. & Ren, D. 2017. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget, 8: 25310.

Zobel, G., Leslie, K., Weary, D. & Von Keyserlingk, M. 2015. Ketonemia in dairy goats: Effect of dry period length and effect on lying behavior. Journal of dairy science, 98: 6128-6138.




DOI: https://doi.org/10.13170/ajas.9.2.32734

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


DETAIL VISITORS STATISTIC COUNTER CLICK HERE

 

This work is licensed under a Creative Commons Attribution - 4.0 International Public  License (CC - BY  4.0).