Journal of Data Analysis

  • Home
  • About
  • Login
  • Register
  • Categories
  • Search
  • Current
  • Archives
  • Announcements
  • PUBLICATION ETHICS
Home > Volume 1, Number 2, December 2018 > Sari
User
 
Template of Article
Example of Article
Certificate of Reviewing
Open Journal Systems
PRINCIPAL CONTACT
Asep Rusyana
Department of Statistics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University
Jalan Syech Abdurrauf No.3, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia
Email: jda@unsyiah.ac.id
Mobile Phone: +6281360635965

Picture Link:

 

Link
  • Department of Statistics
  • Forstat
  • Universitas Syiah Kuala
  • ISSN Online
  • Google Scholar
  • Garuda
  • Crossref
  • IOS
  • WorldCat
  • BASE
  • ISJD
  • Microsoft Academic
  • DOAJ
  • Arjuna Akreditasi Jurnal Nasional
  • Sinta
  • Scopus
  • Web of Science

 Picture Link:

 

 

 

Journal Help

Penentuan Batas Maksimum Premi Asuransi Pertanian

Yunita Wulan Sari

Abstract

Risiko kerugian yang dialami oleh seseorang dapat dipengaruhi oleh faktor-faktor non-deterministik yang bersifat tidak pasti dan random. Risiko kerugian ini dapat dideskripsikan dalam uncertain random variable. Fungsi utilitas juga dapat membantu dalam memudahkan persoalan yang penuh dengan ketidakpastian. Di Indonesia, kebanyakan petani masih enggan ikut serta dalam program asuransi pertanian dengan alasan besarnya premi, jaminan atas gagal panen yang diperoleh, dan syarat klaim tidak sebanding dengan modal tanam yang petani keluarkan. Oleh karena itu, dalam penelitian ini akan dibahas bagaimana menentukan batas maksimum premi pertanian dengan menggunakan fungsi utilitas dari modal tanam dan memandang besarnya kerugian yang dihadapi petani sebagai variabel random tak pasti. Hasil penelitian ini dapat menjadi alternatif penghitungan batas maksimum premi yang mudah dalam penerapannya.

 

The risk of loss experienced by a person can be influenced by non-deterministic factors that are uncertain and random. This loss risk can be described in the uncertain random variable. Utility functions can also help to facilitate problems that are filled with uncertainty. In Indonesia, most farmers are still reluctant to participate in agricultural insurance programs by reason of the amount of premiums, collateral for crop failures obtained, and claim requirements not proportional to the capital they spend. Therefore, in this study will be discussed how to determine the maximum limit of agricultural insurance premiums, using utility function of capital investment and looking the magnitude of expectations of losses faced as uncertain random variable. The results of this study can be an alternative premium calculation limit that is easy to implement.

 Keywords

Uncertain random variable; Utility functions; Agricultural insurance; Maximum premium limit

 Full Text:

PDF (Bahasa Indonesia)

References

Liu, Y., Li, X., dan Liu Yl., 2015, The Bounds of Premium and Optimality of Stop Loss Insurance Under Uncertain Random Environments, Insurance : Mathematics and Economics, Vol 64, hal. 273-278.

Gerber, H.U., dan Pafumi, G., 1999, Utility Functions : From Risk Theory to Finance, North American Actuarial Journal, Vol 2 (3), hal 74-100.

Aceng, K.M., Kudus, A., dan Karyana, Y., 2016, Metode Parametrik untuk Menghitung Premi Program Asuransi Usaha Tani Padi di Indonesia, Jurnal Penelitian dan Pengabdian Masyarakat (Ethos), Vol. 4 (2), hal 318-326.

Putri, I.A.G.K., Dharmawan, K., dan Tastrawati, N.K.T., 2017, Perhitungan Harga Premi Asuransi Pertanian yang Berbasis Indeks Curah Hujan Menggunakan Metode Black Scholes, E-Jurnal Matematika, Vol. 6 (2), hal 161-167.

Qosim, S., Dharmawan, K., dan Harini, L.P.I., 2018, Penentuan Harga Premi Asuransi Pertanian Berbasis Indeks Curah Hujan dengan Menggunakan Metode Pembangkit Distribusi Eksponensial Campuran, E-Jurnal Matematika, Vol 7 (2), hal 141-147.

Liu, B, Uncertainty Theory 2nd Edition, Springer-Verlag, Berlin, 2007.

Liu, B, 2009a, Some Research Problems in Uncertainty Theory, J. Uncertain Syst, Vol 3(1), hal 3-10.

Liu, B, 2012a, Why is There A Need for Uncertainty Theory?, J. Uncertain Syst, Vol 6(1), hal 3-10.

Liu, Y., 2013, Uncertain Random Variables : A Mixture of Uncertainty and Randomness, Soft Comput, Vol 17, hal 625-634.

Gao, H., dan Wang, X., 2014, Variance of Uncertain Random Variables, Journal of Uncertainty Analysis and Applications, Vol 2 (6).

DOI: https://doi.org/10.24815/jda.v1i2.12204

Refbacks

  • There are currently no refbacks.

Partnership with: 

About The Author

Yunita Wulan Sari
Program Studi Statistika, Departemen Matematika, Universitas Gajah Mada
Indonesia

Indexed by:

 
Keywords ARIMA Analisis Regresi Banda Aceh Biplot Canonical correlation analysis Computer Network Correspondence Development areas Forecasting Hybrid Kemiskinan Korelasi MANOVA Mean lingkage Multidimensional Nutritonal status Quality of Service Software-defined Network Spatial Regression Stunting Sumatera Island
Journal Content

Browse
  • By Issue
  • By Author
  • By Title
  • Other Journals
  • Categories
Since 17 March 2018
Visitors since 17 March 2018

Flag Counter

View My Stats

Font Size

 

 

 ISSN 2623-0658 (Print) 

 ISSN 2623-2286 (Online)

 

Creative Commons License
Journal of Data Analysis (JDA) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.