Suatu Kajian Tentang Bilangan Sempurna
Abstract
Dalam tulisan ini akan dijelaskan mengenai kriteria bilangan sempurna genap dan bentuk bilangan sempurna ganjil (jika ada). Jika $2^k-1$ prima maka $2^{k-1}(2^k-1)$ berupa bilangan sempurna. Sebaliknya, semua bilangan sempurna genap berbentuk $2^{k-1}(2^k-1)$ , dimana $2^k-1$ prima. Maka masalah menentukan bilangan sempurna genap setara dengan menentukan $k$ sehingga $2^k-1$ prima. Bilangan $2^k-1$ disebut sebagai bilangan Mersenne dan ditulis dengan $M_k$.
In this paper will be explained about the criteria of the even perfect numbers and the form of odd perfect numbers (if any). If is prime, then is perfect. Conversely, all even perfect numbers are of the form with is a prime. Thus, finding even perfect numbers is equivalent to find the integers for which is prime. The numbers of the form called Mersenne numbers and is denoted by .
Full Text:
PDF (Bahasa Indonesia)References
Burton, David M. 2007. Elementary Number Theory, 6^th ed. McGraw-Hill, New York.
Caldwell, Chris K. Mersenne Primes: History, Theorems and Lists. http://primes.utm.edu/mersenne. Tanggal akses 29 September 2018.
Great Internet Mersenne Prime Search, GIMPS. 2013. Largest Known Prime, 50th Known Mersenne Prime Found!!. http://mersenne.org. Tanggal akses 29 September 2018.
Honsberger, Ross. 1970. Ingenuity in Mathematics. Mathematical Association of America, Washington DC.
Refbacks
- There are currently no refbacks.