Suatu Catatan tentang Subgrup Normal dan Ideal
Abstract
Grup Bagian Normal (subgrup normal) memainkan peran penting dalam aljabar grup. Grup bagian di didefinisikan normal jika dan hanya jika koset kiri di sama dengan koset kanan di Penelitian ini merupakan kajian literatur dan membahas detail alasan penamaan subgrup normal, terutama terkait dengan pembentukan grup faktor. Lebih lanjut, dibahas juga dasar pendefinisian ideal pada pembentukan ring (gelanggang) faktor.
Normal subgroup plays an important role in group algebra. A subgroup of a group is called a normal subgroup of if for all This research is literature review and discuss the reason for subgroup to be defined a normal. Furthermore, we also discuss the definition of an ideal that used to form a ring factor.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Fraleigh, J.B. 2002. A First Course in Abstract Algebra, 7th. Pearson Education, London.
Galian, J.A. 2017. Contemporary Abstract Algebra, 9th ed. Cengage Learning, Boston, USA.
Gilbert, L. dan Gilbert, J. 2015. Elements of Modern Algebra, 8th. Cengage Learning, Stamford, USA.
Gilbert, W.J. dan Nicholson, W. K. 2004. Modern Algebra With Aplication, 2nd. John Wiley & Son, Inc, New Jersey.
Hungerford, T. W. 2014. Abstract Algebra: An Introduction, 3th. Cengage Learning, Boston, USA.
Judson, T.W. 2009. Abstract Algebra: Theory and Applications. Abstract.ups.edu.
Refbacks
- There are currently no refbacks.