Beberapa Subgrup dari SL(2,3)
Abstract
Artikel ini membahas mengenai SL(2,3) dengan rincian elemen-elemennya. Dengan bantuan Tabel Cayley dibuktikan bahwa SL(2,3) merupakan grup dan memiliki beberapa subgrup siklik dan subgrup tidak siklik sesuai dengan Teorema Lagrange. Lebih jauh, juga dibuktikan bahwa SL(2,3) tidak memiliki subgrup berorder 12.
This article discusses about SL(2,3)with its detail elements. By using Cayley Table, we prove that SL(2,3)is a group and has cyclic subgroup and noncyclic subgroup according to The Lagrange Theorem. Futher, we also give a detail proof that SL(2,3)has no subgroup of order 12.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
J. A. Gallian, Contemporary Abstract Algebra, 9th ed. Boston: Cengage Learning, 2017.
M. Brennan and D. Machale, “Variations on a Theme: A4 Definitely Has no Subgroup of Order Six!,” Math. Mag., vol. 73, no. 1, p. 36, Feb. 2000.
J. B. Nganou, “How rare are subgroups of index 2?,” Math. Mag., vol. 85, no. 3, pp. 215–220, Jun. 2012.
G. Mackiw, “Finite Groups of 2×2 Integer Matrices,” Math. Mag., vol. 69, no. 5, pp. 356–361, 1996.
G. Mackiw, “The Linear Group SL (2, 3) as a Source of Examples,” Math. Gaz., vol. 81, no. 490, p. 64, Mar. 1997.
Shariar Shariari, Algebra in Action, A Course in Groups, Rings, and Fields. Providence, Rhode Island: American Mathematical Society, 2017.
L. Gilbert and J. Gilbert, Elements of Modern Algebra., 8th ed. Stamford: Cengage Learning, 2015.
T. W. Hungerford, Abstract Algebra, an Introduction, Third. Boston: Books/Cole, Cengage Learning, 2014.
M. Mahmudi, “Suatu Catatan tentang Subgrup Normal dan Ideal,” J. Data Analysis, vol. 1, no. 2, pp. 77–82, Dec. 2018.
Refbacks
- There are currently no refbacks.