Identifikasi Faktor-Faktor yang Memengaruhi Angka Harapan Hidup di Sumatera Tahun 2018 Menggunakan Analisis Regresi Spasial Pendekatan Area
Abstract
Life expectancy is an estimate of the life span that can be achieved by residents in a region. Life expectancy is one of the indicators of a country’s public health degree that is used as a benchmark in evaluating government performance in the health, environmental, and socioeconomic fields. One of the factors that influence the achievement of life expectancy is the location between regions, so in conducting the analysis necessary to consider the element of location. This study aims to identify factors that have a significant effect on life expectancy in 154 districts/cities of Sumatra Island with spatial regression analysis of the area approach and to obtain the best model of spatial regression in the life expectancy modeling in Sumatra Island. Spatial regression is a statistical analysis to model and evaluate relationships between dependent variables and independent variables by paying attention to interrelations of location elements. The spatial regression model approaches the area of SAR, SEM, and SARMA reviewed with 16 independent variables selected from 17 identified independent variables. Data sourced from BPS and IPKM in 2018. The results show that the SEM model is the best spatial regression model for the area approach with a value of 58.23% and an AIC value of 600.27. In term of spatial, variables that have a significant effect affect fife expectancy in Sumatra Island is the proportion of malnourished and undernourished toddlers (X1), the proportion of villages with the number of adequate of midwives per1,000 inhabitants (X7), the proportion of households with access to sanitation (X9), the percentage of population live in poverty (X13), the illiteracy rate of the population aged 15 years and over (X14), and the average length of schooling (X15).
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Badan Pusat Statistik. (2020). Angka Harapan Hidup. Diakses pada 20 Desember 2020, dari https://sirusa.bps.go.id/sirusa/index.php/indikator/48.
Halicioglu, F. (2011). Modeling Life Expectancy in Turkey, Economic Modeling. Jurnal Publikasi Universitas Yeditepe, 28(5), 2075–2082.
Population Reference Bureau. (2020). 2020 World Population Data Sheet. Washington DC: Population Reference Bureau Inc.
Kementerian Kesehatan RI. (2019). Profil Kesehatan Indonesia Tahun 2018. Jakarta: Balitbangkes.
Ekwarso, E. & Sari, L. (2010). Penyerasian Kebijakan Kependudukan di Provinsi Riau. Jurnal Ekonomi, 18(02), 36–49. https://doi.org/http://dx.doi.org/10.31258/je.18.02.p.%25p.
Badan Pusat Statistik. (2019). Ekonomi Indonesia Triwulan IV-2018 Tumbuh 5,17 Persen. Diakses pada 15 Desember 2020, dari https://www.bps.go.id/pressrelease/2019/02/06/1619/ekonomi-indonesia-2018-tumbuh-5-17-persen.html.
Badan Pusat Statistik. (2018). Statistik Indonesia Tahun 2018. Jakarta: Badan Pusat Statistik RI.
Walpole, R. E. (1992). Pengantar Statistika: Edisi ke-3. Terjemahan dari Introduction to Statistics 3rd ed, oleh Ir. Bambang Sumantri. Jakarta: PT Gramedia Pustaka Utama.
Draper, N. R., & Smith, H. (1992). Applied Regression Analysis (2nd ed.). New York: John Wiley and Sons Inc.
LeSage, J. P., & Pace, R. K. (2009). Introduction to Spatial Econometrics. Boca Raton: CRC Press.
Sarrias, M. (2020). Lecture 1: Introduction to Spatial Econometrics. Chile: Universidad de Talca.
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic Publishers.
Ward, M. D., & Gleditsch, K. S. (2008). Spatial Regression Model. United States: Sage Punlicaton Inc.
Anselin, L., & Bera, A. (1998). Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics. New York: Marcel Dekker.
Lee, J., & Wong, D. W. (2001). Statistical analysis with ArcView GIS. Canada: John Wiley & Sons Inc.
Arbia, G. (2006). Spatial Econometrics: Statistical Foundation Application to Regional Convergence. Berlin: Springer.
Nurhasanah, Rusyana, A. and Fitriana, AR. 2021. Binary logistic regression for identification of high school student interest in Banda Aceh city in continuing study at Universitas Syiah Kuala. J. Phys. 1882 012034.
Marzuki, Sofyan, H. dan Rusyana, A., 2010. Pendugaan Selang Kepercayaan Persentil Bootstrap Nonparametrik untuk Parameter Regresi. Statistika, 10(1), pp.13-23.
Refbacks
- There are currently no refbacks.