Nurul Isnaini, Dedes Amertaningtyas, Hanief Eko Sulistyo, Artharini Irsyammawati, Faizal Andri


The purpose of this current study was to evaluate the influence of nutritional flushing on body morphometrics of female breeding goats. This study used 32 local female goats or does with an average age of 3.28±1.08 years and an average body weight of 42.47±8.28 kg. The goats were distributed in a completely randomized design using a 2 x 2 factorial pattern with 8 replications. The first factor was the flushing feed (FF) type, consisting of rice bran and concentrate, whereas the second factor was the level of tannin-protected arginine (TPA: 0 and 300 mg/kg). The body morphometrics observed in this study were initial body length (IBL), final body length (FBL), body length change (BLC), initial chest girth (ICG), final chest girth (FCG), chest girth change (CGC), initial wither height (IWH), final wither height (FWH), and wither height change (WHC). The IBL, FBL, BLC, ICG, FCG, IWH, FWH, and WHC of the local does were not significantly different (P>0.05) after receiving the FF type. However, FF significantly affected the CGC of the goats (P<0.001). The use of concentrate for the local female local goats resulted in a higher CGC (P<0.001) compared to the use of rice bran. On the other hand, TPA did not significantly affect all body morphometrics of the goats (P>0.05). Thus, it can be concluded that the use of concentrate leads to higher chest girth change, giving better body growth compared to the use of rice bran. The addition of tannin-protected arginine was also found to have no significant contribution to the body morphometrics of the local female goats. _____________


concentrate; local goats; small ruminant; productivity

Full Text:



Abd-Allah, S., Salman, F., Shoukry, M., Abd-El Rahman, H., Mohamed, M., and Abedo, A. 2019. Study of some morphological characteristics of boer goat raised in egypt. Adv. Anim. Vet. Sci. 7(10): 88-897.

Aidismen, Y.D.P., Laconi, E.B., and Astuti, D.A. 2018. The utilization of different protein sources as soybean meal substitution in the flushing diet on reproductive performances of doeling. Buletin Peternakan 42(2): 115–121.

Akhtar, A., Hoque, M.A., Bhuiyan, A.K.F.H., Amin, M.R., and Habib, M.A. 2021. A study on morphological characterization of Black Bengal goat at three Villages under Bhaluka upazila in Mymensingh district of Bangladesh. Int. J. Livest. Prod. 12(2): 86-97.

Al-Dabbas, F.M., Hamra, A.H., and Awawdeh, F.T. 2008. The effect of arginine supplementation on some blood parameters, ovulation rate and concentrations of estrogen and progesterone in female Awassi sheep. Pak. J. Biol. Sci. 11(20): 2389–2394.

Batubara, A., Noor, R.R., Farajallah, A., Tiesnamurti, B., and Doloksaribu, M. 2011. Morphometric and phylogenic analysis of six population Indonesian local goats. Media Peternakan 34(3): 165-165.

Bee, G., Dohme-Meier, F., and Girard, M. 2019. The potential of condensed tannin-rich feedstuff to affect the nutritional and sensory qualities of ruminant-based products. In IOP Conf. Ser. Earth Environ. Sci. 333(1): 012004.

Budisatria, I.G.S., Panjono, N.N., Udo, H.M.J., and Atmoko, B.A. 2021. The productivity comparison between Bligon and Kejobong goats in Indonesia, based from on-farm and on-station research. J. Anim. Health Prod. 9(3): 262-270.

Costa, K.A., Marques, D.B.D., de Campos, C.F., Saraiva, A., Guimarães, J.D., and Guimarães, S.E.F. 2019. Nutrition influence on sow reproductive performance and conceptuses development and survival: A review about L-arginine supplementation. Livest. Sci. 228: 97–103.

Dakhlan, A., Hamdani, M.D.I., Putri, D.R., Sulastri, S., and Qisthon, A. 2021. Prediction of body weight based on body measurements in female Saburai goat. Biodiversitas 22(3): 1391-1396.

de Chávez, J.A.R., Guzmán, A., Zamora-Gutiérrez, D., Mendoza, G.D., Melgoza, L.M., Montes, S., and Rosales-Torres, A.M. 2015. Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus. Trop. Anim. Health Prod. 47(6): 1067–1073.

Delgadillo, J.A., Lemière, A., Flores, J.A., Bedos, M., Hernández, H., Vielma, J., Guerrero-Cervantes, M., Zarazaga, L.A., Keller, M., and Chemineau, P. 2020. Undernutrition reduces the body weight and testicular size of bucks exposed to long days but not their ability to stimulate reproduction of seasonally anestrous goats. Animal 14(12): 2562-2569.

Depison, D., Putra, W.P., Gushairiyanto, G., Alwi, Y., and Suryani, H. 2020. Morphometric characterization of Kacang goats raised in lowland and highland areas of Jambi Province, Indonesia. J. Adv. Vet. Anim. Res. 7(4): 734-743.

Directorate General of Livestock and Animal Health Services. 2021. Livestock and Animal Health Statistics 2021. Ministry of Agriculture of the Republic of Indonesia, Jakarta.

Fraga-Corral, M., García-Oliveira, P., Pereira, A.G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M.A., and Simal-Gandara, J. 2020. Technological application of tannin-based extracts. Molecules 25(3): p.614.

Gallego-Calvo, L., Gatica, M.C., Guzmán, J.L. and Zarazaga, L.A., 2015. Reproductive performance response to the male effect in goats is improved when doe live weight/body condition score is increasing. Anim. Reprod. Sci. 156: 51-57.

Gilbreath, K.R. 2018. Arginine Supplementation for Improved Reproductive Performance in Beef Cattle. Thesis. Texas A&M University.

Gootwine, E., Rosov, A., Alon, T., Stenhouse, C., Halloran, K.M., Wu, G., and Bazer, F.W. 2020. Effect of supplementation of unprotected or protected arginine to prolific ewes on maternal amino acids profile, lamb survival at birth, and pre- and post-weaning lamb growth. J. Anim. Sci. 98(11): 1-9.

Green, M.A., Whitlock, B.K., Edwards, J.L., Scholljegerdes, E.J., and Mulliniks, J.T. 2017. Rumen-protected arginine alters blood flow parameters and luteinizing hormone concentration in cyclic beef cows consuming toxic endophyte-infected tall fescue seed. J. Anim. Sci. 95(4): 1537–1544.

Hsu, C.N. and Tain, Y.L. 2019. Impact of arginine nutrition and metabolism during pregnancy on offspring outcomes. Nutrients 11(7): p.1452.

Hussain, T., Tan, B., Ren, W., Rahu, N., Kalhoro, D.H., and Yin, Y. 2017. Exploring polyamines: Functions in embryo/fetal development. Anim. Nut. 3(1): 7–10.

Idamokoro, E.M., Muchenje, V., and Masika, P.J. 2017. Peri-and post-parturient consequences of maternal undernutrition of free ranging does: a review. Livest. Res. Rural Dev. 29(10): p.202.

Isnaini, N., Ihsan, M.N., and Wahjuningsih, S. 2019. Mangosteen peel extract in Tris-egg yolk extender improves fertility of cryopreserved goat sperm. Livest. Res. Rural Dev. 31(4): p.53.

Jayanegara, A., Yogianto, Y., Wina, E., Sudarman, A., Kondo, M., Obitsu, T., and Kreuzer, M. 2020. Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in vitro ruminal methane and ammonia formation. Animals 10: p.1531.

Kaumbata, W., Banda, L., Mészáros, G., Gondwe, T., Woodward-Greene, M.J., Rosen, B.D., Van Tassell, C.P., Sölkner, J., and Wurzinger, M. 2020. Tangible and intangible benefits of local goats rearing in smallholder farms in Malawi. Small Rumin. Res. 187: p.106095.

Knupp, L.S., Lunesu, M.F., Costa, R.G., Ledda, M., Knupp, S.N.R., Acciaro, M., Decandia, M., Molle, G., Francesconi, A.H.D., and Cannas, A. 2021. Pre-and post-slaughter methodologies to estimate body fat reserves in lactating Saanen goats. Animals 11(5): p.1440.

Kusminanto, R.Y., Alawiansyah, A., Pramono, A., and Cahyadi, M. 2020. Body weight and body measurement characteristics of seven goat breeds in Indonesia. In IOP Conf. Ser. Earth Environ. Sci. 478(1): p.012039).

Maksimović, N., Bauman, F., Petrović, M.P., Caro Petrović, V., Ružić-Muslić, D., Mićić, N., and Milošević-Stanković, I. 2015. Productive characteristics and body measurements of alpine goats raised under smallholder production systems in central Serbia. Biotechnol. Anim. Husb. 31(2): 245-253.

Mayberry, D., Ash, A., Prestwidge, D., and Herrero, M. 2018. Closing yield gaps in smallholder goat production systems in Ethiopia and India. Livest. Sci. 214: 238-244.

Miller, B., Dubeuf, J.P., Luginbuhl, J.M., and Capote, J. 2012. Scaling up goat based interventions to benefit the poor. A Report by the International Goat Association based on the IGA/IFAD Project, 2012.

Mohsan, I., Haque, M.N., Ahmad, N., and Mustafa, H. 2019. Effect of dietary protein level on growth and body condition score of male Beetal goats during summer. S. Afr. J. Anim. Sci. 49(5): 900-903.

Mulyono, R.H., Sumantri, C., Noor, R.R., Jakaria, J., and Astuti, D.A. 2018. The prediction of prolificacy using linear body parameters and craniometric analysis in Etawah-grade does. Trop. Anim. Sci. J. 41(2): 77-84.

Nagamine, I., Sunagawa, K., and Kina, T. 2013. Use of awamori-pressed lees and tofu lees as feed ingredients for growing male goats. Asian-Australas. J. Anim. Sci. 26(9): 1262-1275.

Nawab, A., Li, G., An, L., Nawab, Y., Zhao, Y., Xiao, M., Tang, S., and Sun, C. 2020. The potential effect of dietary tannins on enteric methane emission and ruminant production, as an alternative to antibiotic feed additives-A review. Ann. Anim. Sci. 20(2): 355–388.

Nurlatifah, A., Khotijah, L., Komalasari, K., and Astuti, D.A. 2020. The effect of flushing with fatty acid supplementation in ewes ration on folliculogenesis. In IOP Conf. Ser. Earth Environ. Sci. 411: p.012036.

Palencia, J.Y.P., Saraiva, A., Abreu, M.L.T., Zangeronimo, M.G., Schinckel, A.P., and Garbossa, C.A.P. 2018. Effectiveness of citrulline and N-carbamoyl glutamate as arginine precursors on reproductive performance in mammals: A systematic review. PLoS ONE 13(12): e020956.

Panzuti, C., Duvaux-Ponter, C., and Dessauge, F. 2018. High feeding level after early weaning had no impact on subsequent milk production in Alpine goats. J. Appl. Anim. Res. 46(1): 1344-1351.

Pesmen, G. and Yardimci, M. 2008. Estimating the live weight using some body measurements in Saanen goats. Arch. Zootech. 11(4): 30-40.

Sarmin, Widiyono, I., and Anggraeni, D. 2021. Measurement of body measurement characteristics and vital parameters in Saanen, Sapera, and Ettawa crossbred goats. In IOP Conf. Ser. Earth Environ. Sci. 662(1): p.012026.

Scano, P. and Caboni, P. 2021. Innovation meets tradition in the sheep and goat dairy industry. Dairy 2(3): 422-424.

Seabra, I.J., Chim, R.B., Salgueiro, P., Braga, M.E.M., and de Sousa, H.C. 2018. Influence of solvent additives on the aqueous extraction of tannins from pine bark: potential extracts for leather tanning. J. Chem. Technol. Biotechnol. 93(4): 1169–1182.

Septiyawan, G.A., Bugiwati, S.R.A., and Dagong, M.I.A. 2020. Identification performance of quantitative traits of Marica goats in Maros and Jeneponto regencies. In IOP Conf. Ser. Earth Environ. Sci. 492(1): p.012104.

Shaukat, A., ur Rehman, T., Shukat, R., Rajput, S.A., Shaukat, S., Naeem, M.A., Hassan, M., Fatima, T., Ahmad, F., Saleem, M.U., Arooj, F., Mehfooz, A., and Qureshi, A.S. 2020. Effects of nutrient flushing on production and reproductive performance of teddy goats (Capra hircus). Pak. J. Zool. 52(2): 457–463.

Sun, L., Zhang, H., Wang, Z., Fan, Y., Guo, Y., and Wang, F. 2018. Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod. Fertil. Dev. 30(8): 1116–1127.

Tadesse, D., Urge, M., Animut, G., and Mekasha, Y. 2016. Growth and carcass characteristics of three Ethiopian indigenous goats fed concentrate at different supplementation levels. SpringerPlus 5(1): 1-8.

Waheed, H.M., Moaeen-ud-Din, M., Khan, M.S., Saif-ur-Rehman, M., and Nawaz-ul-Rehman, M.S. 2020. Prediction of monthly body weight from body measurements in Beetal goats reared under field and farm conditions. J. Anim. Plant Sci. 30(1): 25-31.

Wahjuningsih, S., Ciptadi, G., Ihsan, M.N., Isnaini, N., and Rahayu, S. 2019. Supplementation of Moringa oleifera leaves’ extract in Tris-egg yolk extender on the quality and fertility of cryopreserved Senduro goat sperm. Livest. Res. Rural Dev. 31(12): p.185.

Wu, G., Bazer, F.W., Satterfield, M.C., Li, X., Wang, X., Johnson, G.A., Burghardt, R.C., Dai, Z., Wang, J., and Wu, Z. 2013. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45(2): 241–256.

Wu, G., Bazer, F.W., Johnson, G.A., and Hou, Y. 2018. Board-invited review: Arginine nutrition and metabolism in growing, gestating, and lactating swine. J. Anim. Sci. 96(12): 5035–5051.

Zeng, X., Mao, X., Huang, Z., Wang, F., Wu, G., and Qiao, S. 2013. Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction 145(1): 1–7.

Zhang, H., Sun, L., Wang, Z., Deng, M., Nie, H., Zhang, G., Tiewei, M., and Wang, F. 2016. N-carbamylglutamate and L-arginine improved maternal and placental development in underfed ewes. Reproduction 151(6): 623–635.


Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Copyright (c) 2022 by author and J. Kedokt. Hewan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by:


p-ISSN: 1978-225X e-ISSN: 2502-5600 Copyright© 2007-2021