PHYSIOLOGICAL RESPONSES OF FEMALE BEEF CATTLE AGAINST PEATLAND MICROCLIMATE STRESS IN CENTRAL KALIMANTAN

Adrial Adrial, Rudy Priyanto, Salundik Salundik, Ahmad Yani, Luki Abdullah

Abstract


This study aimed to evaluate the physiological response of female beef cattle to peatland microclimate stress in Central Kalimantan. This study used direct observation on small holder beef cattle farm.  Microclimate data on 41 units cattle barns and physiological parameters of female cattle were collected in the morning, at noon and in the afternoon.  The physiological parameter measurements involved 215 female beef cattle, consisting of 119 Bali and 96 crossbred cattle with different physiological stages including pregnant cows, lactating cows, dry cows, heifers and calves. The microclimate condition within cattle barns on peatland of Central Kalimantan is not the comfort zone for beef cattle.  It is characterized by high air temperature and relative humidity, and low wind speed, which result in high temperature humidity index (THI).  The barn with gable roof type and asbestos materials gave the lowest THI.   This Microclimate caused heat stress to beef cattle reared on the peatlands, indicated by the high rectal temperature, heart rate, respiratory rate, and heat tolerance coefficient, although it was still categorized as mild to moderate stress. Bali cattle showed better physiological responses to microclimate stress than crossbred cattle.  Pregnant crossbred cows were the most susceptible to peatland microclimate stress.

Keywords


Physiological response; Microclimate; Heat stress; Peatlands; Female beef cattle

Full Text:

PDF

References


Aboul AI. 1997. The Role of Aldosterone in Improving Productivity of Stressed Farm Animals with Different Techniques. Ph. D Thesis. Zagazig University , Egypt.

Adamczyk K, Pokorska J, Makulska J, Earley B, Mazurek M. 2013. Genetic analysis and evaluation of behavioural traits in cattle. Livestock Science, 154(1–3):1–12. doi:10.1016/j.livsci.2013.01.016.

Alam MM, Hashem MA, Rahman MM, Hossain MM, Haque MR, Sobhan Z, Islam MS. 2011. Effect of heat stress on behavior, physiological and blood parameters of goat. Progressive Agriculture, 22(1–2):37–45. doi:10.3329/pa.v22i1-2.16465.

Amiano K, Satata B, Imanuel R. 2018. Status fisiologis sapi bali betina yang dipelihara pada lahan gambut. Agri Peat, 19(02):94–101. doi:10.36873/AGP.V19I02.162.

Beatty DT, Barnes A, Taylor E, Pethick D, McCarthy M, Maloney SK. 2006. Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. Journal of Animal Science, 84: 972–985. doi:10.2527/2006.844972x.

Beede D, Collier R. 1986. Potential nutritional strategies for intensively managed cattle during thermal stress. Journal of Animal Science, 62: 543–554.

Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. 2010. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4(7): doi:10.1017/S175173111000090X.

Badan Pusat Statistik Kalimantan Tengah. 2020. Provinsi Kalimantan Tengah Dalam Angka. BPS Kalimantan Tengah, Palangka Raya.

Brouček J, Mihina Š, Ryba Š, Tongel’ P, Kišac P, Uhrinčať M, Hanus A. 2006. Effects of high air temperatures on milk efficiency in dairy cows. Czech Journal of Animal Science, 51(3):93–101. doi:10.17221/3915-cjas.

Brown-Brandl TM. 2018. Understanding heat stress in beef cattle. Revista Brasileira de Zootecnia, 47(e20160414):1-9. doi:10.1590/rbz4720160414.

Daldjoeni N, Sudarmo P. 2014. Pokok-Pokok Klimatologi. Ombak, Yogyakarta.

Feeley KJ, Stroud JT. 2018. Where on Earth are the “tropics”? Frontiers of Biogeography, 10(1–2):1–7. doi:10.21425/F5101-238649.

Gupta M, Kumar S, Dangi S, Jangir B. 2013. Physiological, biochemical and molecular responses to thermal stress in goats. International Journal of Livestock Research, 3(2):27–38.

Hahn G. 1995. Environmental Management for Improved Livestock Performance, Health and Well-being. Japanese Journal of Livestock Management, 30(3):113–127. doi:10.20652/kachikukanri. 30.3_113.

Helal A, Hashem A, Abdel-Fattah M, El-Shaer H. 2010. Effects of heat stress on coat characteristics and physiological responses of Balady and Damascus goats in Sinai, Egypt. American-Eurasian Journal Agriculture & Environment Science, 7(1) 60–69.

Hermawansyah. 2018. Evaluasi Respon Fisiologis Sapi Bali yang Dipelihara pada Lahan Gambut Basah dan Lahan Gambut Kering. Thesis. IPB University, Bogor.

Jackson PGG, Cockcroft PD. 2002. Clinical Examination Of Farm Animals. Blackwell Science Ltd, Oxford.

Kaps M, Lamberson W. 2004. Biostatistics For Animal Science. CABI Publishing. Wallingford, Oxfordshire.

Mader TL, Davis MS, Brown-Brandl T. 2006. Environmental Factors Influencing Heat Stress in Feedlot Cattle. Journal of Animal Science, 84: 712–719.

Nardone A, Ronchi B, Lacetera N, Bernabucci U. 2006. Climatic effects on productive traits in livestock. Veterinary Research Communications, 30(SUPPL. 1):75–81. doi:10.1007/s11259-006-0016-x.

Nugroho K, Widodo B. 2001. The effect of dry-wet condition to peat soil physical characteristic of different degree of decomposition. Proceeding of Jakarta Symposium Peatlands for People, 94–102.

Nurdin S. 2011. Analisis perubahan kadar air dan kuat geser tanah gambut lalombi akibat pengaruh temperatur dan waktu pemanasan. Jurnal SMARTek, 9(2):88–108.

Nuriyasa I, Dewi GAM, Budiari NL. 2015. Indeks kelembaban suhu dan respon fisiologi sapi bali yang dipelihara secara feed lot pada ketinggian yang berbeda. Majalah Ilmiah Peternakan, 18(1):5–10.

Phulia S, Upadhyay R, Jindal S, Misra R. 2010. Alteration in surface body temperature and physiological responses in Sirohi goats during day time in summer season. Indian Jornal of Animal Science, 80(4):340–342.

Ritung S, Wahyunto, Nugroho K. 2012. Karakteristik dan sebaran lahan gambut di Sumatera, Kalimantan dan Papua. Prosiding Seminar Nasional Pengelolaan Lahan Gambut Berkelanjutan, 47–62.

Rury N, Pribadi IGOS, Santoso D. 2015. Pengaruh material dan bentuk atap rumah tinggal terhadap suhu di dalam ruang. Jurnal Arsitektur, 15(1):52–63.

Sarangi S. 2018. Adaptability of goats to heat stress: A review. The Pharma Innovation Journal, 7(4):1114–1126.

Silanikove N. 2000a. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1-2): 1–18.

Silanikove N. 2000b. The physiological basis of adaptation in goats to harsh environments. Small Ruminant Research, 35(3): 181–193.

Silanikove N, Koluman N. 2015. Impact of climate change on the dairy industry in temperate zones: predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Research,123(1): 27–34.

Suretno ND. 2016. Evaluasi Kesesuaian Lingkungan Empat Bangsa Sapi Berdasarkan Kondisi Fisiologis dan Produktivitas di Provinsi Lampung. Dissertation. IPB University, Bogor.

Sutarno, Setyawan A. 2015. Review: Genetic diversity of local and exotic cattle and their crossbreeding impact on the quality of Indonesian Cattle. Biodiversitas, 16(2):327–354.

T. M. Brown-Brandl, D. D. Jones. 2011. Feedlot cattle susceptibility to heat stress: An animal-specific model. Transactions of the ASABE, 54(2):583–598. doi:10.13031/2013.36462.

Wald L. 2018. Basics In Solar Radiation At Earth Surface. MINES ParisTech, Paris.

West JW. 2003. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6):2131–2144. doi:10.3168/jds.S0022-0302(03)73803-X.

West JW. 1999. Nutritional strategies for managing the heat-stressed dairy cow. Journal of Animal Science, 77:21–35. doi:10.2527/1997.77suppl_221x.

Yani A, Purwanto B. 2006. Pengaruh iklim mikro terhadap respons fisiologis sapi peranakan Fries Holland dan modifikasi lingkungan untuk meningkatkan produktivitasnya (ULASAN). Media Peternakan, 29(1):35–46.

Yazgan K, Cedden F, Daştanbek C. 2013. Effects of air temperature and humidity on average daily gain in feedlot cattle of different genotypes. Arch Tierzucht, 56(4):28–41. doi:10.7482/0003-9438-56-004.

Zulkharnaim, Jakaria, Noor RR. 2010. Identification of genetic diversity of growth hormone receptor (GHR|alu I) gene in bali cattle. Media Peternakan, 33(2):81–87. doi:10.5398/medpet.2010.33.2.81.




DOI: https://doi.org/10.21157/j.ked.hewan.v17i2.29115

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 by author and J. Kedokt. Hewan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by:

           
  

p-ISSN: 1978-225X e-ISSN: 2502-5600 Copyright© 2007-2021