THE GENE EXPRESSION OF ADAM17 AS A GENETIC MARKER OF ALZHEIMER DISEASES IN THE BRAIN OF LONG-TAILED MACAQUES (Macaca fascicularis)

Lis Rosmanah, Karin katina Hasya, Uus Saepuloh, Wasmen Manalu, Adi Winarto, Etih Sudarnika, Huda Shalahudin Darusman

Abstract


This study aims to identify the expression of the a disintegrin and metalloproteinase 17 (ADAM17) gene as a marker of Alzheimer's disease in long-tailed macaques (Macaca fascicularis). This study used six brain samples (hippocampus and cortex regions) of long-tailed macaques which was divided into two groups consisting of aged long-tailed macaques and adult long-tailed macaques. The expression of ADAM17 gene was determined by comparing the relative quantification values between the two age groups, and brain regions consisting of the hippocampus and cortex regions. The results of data analysis showed no significant difference in the expression of ADAM17 gene between brain regions and between age groups of long-tailed macaques. However, numerically the results showed a lower expression of ADAM17 gene in the hippocampus region of aged macaques. Lower expression of ADAM17 gene could be a marker of old animals indicating the stages of Alzheimer's disease.


Keywords


ADAM17, hippocampus, cortex, long-tailed monkeys, Alzheimer's disease

Full Text:

PDF

References


Alzheimer’s Association. 2018. Stages of alzheimer’s disease [internet]. [diakses 23 Nov 2021]. Tersedia pada: https://www.alz.org/alzheimersdementia/stages.

Bakkour A, Morris JC, Wolk DA, dan Dickerson BC. 2013. The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition. Neuroimage. 76(1): 332–344.

Bernstein HG, Stricker R, Lendeckel U, Bertram I, Dobrowolny H, Steiner J, Bogerts B, Reiser G. 2009. Reduced neuronal co-localisation of nardilysin and the putative α-secretases ADAM10 and ADAM17 in Alzheimer’s disease and Down syndrome brains. AGE. 31(1): 11–25.

[BPS] Badan Pusat Statistik. 2020. Statistik Penduduk Lanjut Usia 2020. Jakarta (ID): Badan Pusat Statistik.

Cho RW, Park JM, Wolff SB, Xu D, Hopf C, Kim JA, Reddy RC, Petralia RS, Perin MS, Linden DJ, Worley PF. 2008. mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron. 57(6): 858–871.

Clark RE dan Squire LR. 2013. Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proceedings of the National Academy of Sciences. 110(2): 10365–10370.

Cole SW. Social regulation of human gene expression: mechanisms and implications for public health. American Journal of Public Health. 103(1): 84–92.

Darusman H. S., Call J, Sajuthi D, Schapiro SJ, Gjedde A, Kalliokoski O, Hau J. 2014. Delayed response task performance as a function of age in cynomolgus monkeys (Macaca fascicularis). Primates. 55(2):259– 267.

Dave VP, Ngo TA, Pernestig AK, Tilevik D, Kant K, Nguyen T, Wolff A, Bang DD. 2019. MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Laboratory investigation. 99(4): 452–469.

Eudey AA. 2008. The crab-eating macaque (Macaca fascicularis): widespread and rapidly declining. Primate conservation. 23(1): 129–132.

Eudey A, Kumar A, Singh M, dan Boonratana R. 2021. Macaca fascicularis (amended version of 2020 assessment). The IUCN Red List of Threatened Species 2021: e.T12551A204494260. [diakses 16 Okt 2021].

Guerreiro, R. and Bras, J., 2015. The age factor in Alzheimer’s disease. Genome medicine. 7(1): 1–3.

Gumert MD, Rachmawan D, Iskandar E, dan Pamungkas J. 2012. Populasi monyet ekor panjang (Macaca fascicularis) di Taman Nasional Tanjung Puting, Kalimantan Tengah. Jurnal Primatologi Indonesia. 9(1): 3–12.

Gartland, K. N., Brand, C. M., Ulibarri, L. R., & White, F. J. 2020. Variation in Adult Male-Juvenile Affiliative Behavior in Japanese Macaques (Macaca fuscata). Folia Primatologica. 91, 610–621.

Ho XY, Coakley S, Amor R, Anggono V, Hilliard MA. 2022. The metalloprotease ADM-4/ADAM17 promotes axonal repair. Science advances. 8(11): 1–14.

Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. 2019. Functions of ‘A disintegrin and metalloproteases (ADAMs)’in the mammalian nervous system. Cellular and Molecular Life Sciences. 76(16): 3055–3081.

Hu R, Fan C, Li H, Zhang Q, Fu YF. 2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol. 10(1): 1–12. https://doi.org/10. 1186/1471-2199-10-93

Jahn H. 2013. Memory loss in Alzheimer's disease. Dialogues in Clinical Neuroscience 15(4): 445–454.

Kärkkäinen I, Rybnikova E, Pelto-Huikko M, Huovila APJ. 2000. Metalloprotease-Disintegrin (ADAM) Genes Are Widely and Differentially Expressed in the Adult CNS. Molecular and Cellular Neuroscience. 15(6): 547–560. doi:10.1006/mcne.2000.0848

Karuppaiya P, Yan XX, Liao W, Wu J, Chen F, Tang L. 2017. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas—a biodiesel plant. Plos ONE. 12(2): e0172460.

Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. 2018. Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 4(1): 575–590.

Laksana MRP, Rubiati VS, dan Partasasmita R. 2017. Struktur populasi monyet ekor panjang (Macaca fascicularis) di Taman Wisata Alam Pananjung Pangandaran, Jawa Barat. Pros Sem Nas Masy Biodiv Indon. 3(2): 224–229.

Liljegren M, Landqvist WM, Rydbeck R, Englund E. 2018. Police interactions among neuropathologically confirmed dementia patients: prevalence and cause. Alzheimer Dis Assoc Disord. 32(4):346–350.

Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD. 2017. The role of the hippocampus in navigation is memory. Journal of neurophysiology. 117(4): 1785–1796.

Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA. 2012. Revisiting global gene expression analysis. Cell. 151(3): 476–482. Doi:

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al. 2011. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7(3): 263–269.

Morales JC, Disotell TR, dan Melnick DJ. 1999. Molecular Phylogenetic Studies of Nonhuman Primates. Di dalam: Dolhinow P dan Fuentes A, editor. The NonHuman Primates. Mountain View (US): Mayfield Publishing.

Park SJ, Kim YH, Nam GH, Choe SH, Lee SR, Kim SU, Kim JS, Sim BW, Song BS, et al. 2015. Quantitative expression analysis of APP pathway and tau phosphorylation-related genes in the ICV STZ-induced non-human primate model of sporadic Alzheimer’s disease. International Journal of Molecular Sciences. 16(2): 2386–2402.

Pattni KAM. 2014. Beta-amyloid sebagai patogenesis pada penyakit alzheimer. E-Jurnal Medika Udayana. 2(8): 1306–1317.

Qian M, Shen X, Wang H. 2016. The distinct role of ADAM17 in APP proteolysis and microglial activation related to Alzheimer’s disease. Cellular and molecular neurobiology. 36(4): 471–482.

Roos C dan Zinner D. 2015. Diversity and Evolutionary History of Macaques with Special Focus on Macaca Mulatta and Macaca Fascicularis. Di dalam: Bluemel J, Korte S, Schenck E, dan Weinbauer GF, editor. The nonhuman primate in nonclinical drug development and safety assessment. London (UK): Academic Press. 3–16.

Rybnikova E, Gluschenko T, Galeeva A, Tulkova E, Nalivaeva NN, Makova NZ, Turner AJ, Samoilov M. 2012. Differential expression of ADAM15 and ADAM17 metalloproteases in the rat brain after severe hypobaric hypoxia and hypoxic preconditioning. Neuroscience Research. 72(4): 364–373.

Shackleton B, Crawford F, Bachmeier C. 2016. Inhibition of ADAM10 promotes the clearance of Aβ across the BBB by reducing LRP1 ectodomain shedding. Fluids and Barriers of the CNS. 13(1): 1–9.

Suriastini NW, Turana Y, Witoelar F, Sikoki BS, Wicaksono TY, dan Mulyanto ED. 2016. Angka prevalensi demensia, perlu perhatian kita semua. Majalah Kesehatan Indonesia. 2(2): 39–44.

Volgin DV. 2014. Gene Expression: analysis and quantitation. Di dalam: Verma AS, Singh A, editor. Animal Biotechnology Models in Discovery and Translation. Waltham (MA): Elsevier Inc. hlm 207–325.

[WHO] World Health Organization. 2015. 10 Facts on Dementia. WHO [internet]. {diakses 16 Okt 2021]. Tersedia pada: http://www.who.int/features/factfiles/d ementia/en/.

[WHO] World Health Organization. 2020. The top 10 causes of death. WHO [internet]. [diakses 16 Okt 2021]. Tersedia pada: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

Wang L, Hu J, Zhao Y, Lu X, Zhang Q, Niu Q. 2014. Effects of aluminium on β-amyloid (1–42) and secretases (APP-cleaving enzymes) in rat brain. Neurochemical research 39(7): 1338–1345.

Willard SL dan Shively CA. 2012. Modeling depression in adult female cynomolgus monkeys (Macaca fascicularis). American Journal of Primatology. 74(6): 528–542.

Yiannopoulou KG dan Papageorgiou SG. 2020. Current and future treatments in Alzheimer disease: an update. Journal of central nervous system disease. 12(1): 1179573520907397.

Zunke F dan Rose-John S. 2017. The shedding protease ADAM17: Physiology and pathophysiology. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1864(11): 2059–2070.




DOI: https://doi.org/10.21157/j.ked.hewan.v17i3.31014

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 by author and J. Kedokt. Hewan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by:

           
  

p-ISSN: 1978-225X e-ISSN: 2502-5600 Copyright© 2007-2021