Cathelicidin, vitamin D3 dan imunitas terhadap tuberkulosis

Yunita Arliny, Maryatun Hasan

Abstract


Abstrak. Tuberkulosis (TB) merupakan salah satu penyakit infeksi yang menjadi masalah di dunia. Risiko untuk mendapatkan infeksi TB dipengaruhi oleh imunitas alamiah melawan mikobakteria. Peptida antimikroba merupakan salah satu barrier pertahanan alamiah. Cathelicidin adalah suatu peptida anti mikroba yang berperan pada proses imunitas terhadap TB. Cathelicidin Leusin Leusin-37 (LL-37) merupakan satu-satunya cathelicidin yang ada pada manusia dan dapat diekspresikan dari beberapa sel temasuk sel imun. Inducer Cathelicidin yang paling poten adalah 1,25-dihydroxyvitamin D3 yang merupakan bentuk aktif vitamin D 25(OH)D3. Tinjauan pustaka ini membahas tentang cathelicidin, vitamin D3 dam peranannya pada imunitas terhadap TB.

Kata kunci: Cathelicidin, 1,25-dihydroxyvitamin D3, vitamin D 25(OH)2D3, imunitas, Tuberkulosis

Abstract. Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to great extent on the innate immune response against mycobacteria. Antimicrobial peptides are one of the natural defense barriers. Cathelicidin Leucine Leucine-37 (LL-37) is the only cathelicidin present in humans and synthesized by several cells including immune cells. The most effective inducer of Cathelicidin is 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3), which is an active form of vitamin D 25(OH)D3. This review discusses cathelicidin, vitamin D3 and its role in immunity against TB

Keywords: Cathelicidin, 1,25-dihydroxyvitamin D3, vitamin D 25(OH)D3, immunity, Tuberkulosis


Keywords


Kata kunci: Cathelicidin, 1,25-dihydroxyvitamin D3, vitamin D 25(OH)2D3, imunitas, Tuberkulosis; Cathelicidin, 1,25-dihydroxyvitamin D3, vitamin D 25(OH)D3, immunity, Tuberkulosis

References


Daftar Pustaka

World Health Organization. Global tuberculosis report - Executive summary. World Health Organization. [online]. 2019 [Cited 2019 November 10]. Available from: https://www.who.int/tb/publications/global_report/ GraphicExecutiveSummary.pdf

Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol Mech Dis. 2012;7(1):353–84.

Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol. 2012;12(8):581–91.

Lin PL, Flynn JL. Understanding Latent Tuberculosis: A moving target. J Immunol. 2016;185(1):5–22.

Selvaraj P, Harishankar M, Afsal K. Vitamin D: Immuno-modulation and tuberculosis treatment. Can J Physiol Pharmacol. 2015;93(5):377–84.

Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37-A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta. 2016;1858(3):546–66.

Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: A multifunctional peptide involved in mycobacterial infections. Peptides. 2010;31(9):1791–8.

Torres-Juarez F, Cardenas-Vargas A, Montoya-Rosales A, González-Curiel I, Garcia-Hernandez MH, Enciso-Moreno JA, et al. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages. Infect Immun. 2015;83(12):4495–503.

Padhi A, Sengupta M, Sengupta S, Roehm KH, Sonawane A. Antimicrobial peptides and proteins in mycobacterial therapy : Current status and future prospects. Tuberculosis. 2014;94(4):363–73.

Steinmann, J. Induction and regulation of CAMP gene expression; University of Iceland: Reykjavík, Iceland, 2008

Rajaram MVS, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol. 2014;26(6):471–85.

Shin DM, Jo EK. Antimicrobial peptides in innate immunity against Mycobacteria. Immune Netw. 2011;11(5):245–52.

Crowle AJ, Ross EJ, May MH. Inhibition by 1,25(OH)2-vitamin D3 of the multiplication of virulent tubercle bacilli in cultured human macrophages. Infect Immun. 1987;55(12):2945–50.

Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun. 2008;76(3):935–41.

Gombart, A.F.; Borregaard, N.; Koeffler, H.P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25- dihydroxyvitamin D3. FASEB J., 2005, 19(9), 1067-1077. [http://dx.doi.org/10.1096/fj.04-3284com] [PMID: 15985530]

Hase, K.; Eckmann, L.; Leopard, J.D.; Varki, N.; Kagnoff, M.F. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect. Immun., 2002, 70(2), 953-963

Deretic, V.; Kimura, T.; Timmins, G.; Moseley, P.; Chauhan, S.; Mandell, M. Immunologic manifestations of autophagy. J. Clin. Invest., 2015, 125(1), 75-84. [http://dx.doi.org/10.1172/JCI73945] [PMID: 25654553] [43] Yuk, J.M.; Shin, D.M.; Lee, H.M.; Yang, C.S.; Jin, H.S.; Kim, K.K.; Lee, Z.W.; Lee, S.H.; Kim, J.M.; Jo, E.K. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, 6(3), 231-243. [

Songane, M.; Kleinnijenhuis, J.; Netea, M.G.; van Crevel, R. The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis (Edinb.), 2012, 92(5), 388-396

Torres-Juarez F, Cardenas-Vargas A, Montoya-Rosales A, González-Curiel I, Garcia-Hernandez MH, Enciso-Moreno JA, et al. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages. Infect Immun. 2015;83(12):4495–503

Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6(3):231–43.

Bruns H, Stenger S. New insights into the interaction of Mycobacterium tuberculosis and human macrophages. Future Microbiol. 2014;9(3):327–41.

Adams JS, Hewison M. Unexpected actions of vitamin D: New perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab. 2008;4(2):80–90.

Castaneda-Delgado J, Pando-Hernandez R, Serrano CJ, Aguilar-Leon D, Leon-Conteras J, Rivas-Santiago C, et al. Kinetics and cellular sources of cathelicidin during the course of experimental latent tuberculous infection and progressive pulmonary tuberculosis. Clinn Exper Imm J. 2010;161:542–50.

Yamshchikov AV, Kurbatova EV, Kumari M, Blumberg HM, Ziegler TR, Ray SM, et al. Vitamin D status and antimicrobial peptide cathelicidin (LL-37) concentrations in patients with active pulmonary tuberculosis. Am J Clin Nutr. 2010;92(3):1–11.

Zhan Y, Jiang L. Status of vitamin D, antimicrobial peptide cathelicidin and T helper‑associated cytokines in patients with diabetes mellitus and pulmonary tuberculosis. Exp Ther Med. 2015;9(1):11–6.

Kumar NP, Nair D, Banurekha VV, Dolla C, Kumaran P, Sridhar R, et al. Type 2 diabetes mellitus coincident with pulmonary or latent tuberculosis result in modulation of adipocytokines. Cytokine. 2016;79:74–81.

Majewski K, Paulina Ż. Circulating cathelicidin LL-37 in adult patients with pulmonary infectious diseases. Clin Investig Med. 2017;40(1):34–9.

Liu PT, Stenger S, Li H, Tan BH, Krutzik SR, Ochoa MT, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.

Chaudhary S, Thukral A, Tiwari S, Pratyush D, Singh S. Vitamin D status of patients with type 2 diabetes and sputum positive pulmonary tuberculosis. Indian J Endocrinol Metab. 2013;17(9):670.

Zhao X, Yuan Y, Id YL, Zhang T, Bai Y, Kang D, et al. Vitamin D status of tuberculosis patients with diabetes mellitus in different economic areas and associated factors in China. BMJ Open. 2018;149:e017557.

Arliny Y. Prediktor diagnosis tuberkulosis aktif pada penyandang diabetes melitus dengan tuberkulosis laten: kajian terhadap cathelicidin dan 1,25 dihidroxyvitamin D3. Disertasi.2020

Lopez-Lopez N, Gonzalez-Curiel I, Castañeda-Delgado J, Montoya-Rosales A, Gandara-Jasso B, Enciso-Moreno JA, et al. Vitamin D supplementation promotes macrophages’ anti-mycobacterial activity in type 2 diabetes mellitus patients with low vitamin D receptor expression. Microbes Infect. 2014;16(9):755–61.

Mathyssen C, Gayan-Ramirez G, Bouillon R, Janssens W. Vitamin D supplementation in respiratory diseases: Evidence from randomized controlled trials. Polish Arch Intern Med. 2017;127(11):775–84.

Sun YP CQ. Vitamin D receptor FokI gene polymorphism and tuberculosis susceptibility: A meta-analysis. Genet Mol Res. 2015;14(2):6156–63.

Cao Y, Wang X, Cao Z, Cheng X. Association of vitamin D receptor gene taqI polymorphisms with tuberculosis susceptibility: A meta-analysis. Int J Clin Exp Med. 2015;8(6):10187–203.

Junaid K, Rehman A. Impact of vitamin D on infectious disease-tuberculosis-a review. Clin Nutr Exp. 2019;25:1–10.

Nimitphong H, Holick MF. Vitamin D status and sun exposure in Southeast Asia. Dermatoendocrinol. 2013;5(1):34–7.

Setiati S. Vitamin D status among Indonesian elderly women living in institutionalized care unit. Acta Med Indones. 2008;40(2):78–83

Mathyssen C, Gayan Ramirez C, Bouillon R, Janssens W. Vitamin D supplementation in respiratory diseases: evidence from randomized controlled trials. Polish Arch Int Med. 2017;127 (11):775 ̶ 83.

Salahuddin N, Ali F, Hasan Z, et al. Vitamin D accelerates clinical recovery from tuberculosis: results of the SUCCINCT Study [Supplementary Chole calciferol in recovery from tuberculosis]. A randomized, placebo controlled, clinical trial of vitamin D supplementation in patients with pulmonary tuber culosis. BMC Infect Dis. 2013; 13: 22.

Wejse C, Gomes VF, Rabna P, et al. Vitamin D as supplementary treat ment for tuberculosis: A double blind, randomized, placebo controlled trial. Am J Respir Crit Care Med. 2009; 179: 843-850.

Kim EH, Bae JM. Vitamin D supplementation as control program against latent tuberculosis infection in Korean high scholl students. EpiH. 2018; Volume: 40, Article ID: e2018035.


Full Text: PDF

DOI: 10.24815/jks.v20i3.18610

Refbacks

  • There are currently no refbacks.