Nanoencapsulation of Curcumin compounds from Curcuma plants (Curcuma xanthorrhiza) as an anticoagulant therapy in Covid-19 patients
Abstract
Introduction: The COVID-19 is brought about by the SARS-CoV-2 virus (Severe Acute Respiratory Syndrome Coronavirus-2). This pandemic has become a problem in various parts of the world due to the increasing number of positive COVID-19 cases. Severe COVID-19 patients often experience coagulopathy such as thrombosis and venous thromboembolism, which are associated with increased mortality. COVID-19 patients who have coagulopathy have increased D-dimer concentrations, prolonged prothrombin time (PT) or activated partial thromboplastin time (aPTT), increased fibrinogen, and thrombocytopenia. The objective of this study is to find an alternative solution for COVID-19 patients who have coagulopathy using the literature review method by searching the data from in vitro, in vivo, and clinical reports by analyzing the potential of the curcumin compound from ginger as an anticoagulant therapy in Covid-19 patients through its thrombosis, platelet, and anti-inflammatory mechanisms.
Main Text. The nanoencapsulation of curcumin from Curcuma plants (Curcuma xanthorrhiza) can be an alternative prophylactic anticoagulant for COVID-19 patients. This research uses a qualitative method of conceptual analysis, where the focus of the research is based on pre-existing concepts, which are then understood and developed so that they can be described clearly and can be implemented in the field. The result is curcumin can inhibit the pathways of blood coagulation, so it could be the key to reducing mortality.
Conclusion: Nanoencapsulation has proven to be suitable for alternative application in COVID-19 patients considering bioavailability, effectiveness, and minimum side effects.
Keywords
References
Akolade, J. O., Oloyede, H. O. B., Salawu, M. O., Amuzat, A. O., Ganiyu, A. I., & Onyenekwe, P. C. (2018). Influence of formulation parameters on encapsulation and release characteristics of curcumin loaded in chitosan-based drug delivery carriers. Journal of Drug Delivery Science and Technology, 45, 11–19. https://doi.org/10.1016/j.jddst.2018.02.001
Al-Samkari, H., Karp Leaf, R. S., Dzik, W. H., Carlson, J. C. T., Fogerty, A. E., Waheed, A., Goodarzi, K., Bendapudi, P. K., Bornikova, L., Gupta, S., Leaf, D. E., Kuter, D. J., & Rosovsky, R. P. (2020). COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood, 136(4). https://doi.org/10.1182/BLOOD.2020006520
Ambreen, S., Tariq, M., Masoud, M. S., Ali, I., Qasim, M., Mushtaq, A., Ahmed, M., & Asghar, R. (2021). Anticoagulant potential and total phenolic content of six species of the genus Ficus from Azad Kashmir, Pakistan. Tropical Journal of Pharmaceutical Research, 18(6). https://doi.org/10.4314/TJPR.V18I6.14
Antoine, F., Simard, J. C., & Girard, D. (2013). Curcumin inhibits agent-induced human neutrophil functions in vitro and lipopolysaccharide-induced neutrophilic infiltration in vivo. International Immunopharmacology, 17(4). https://doi.org/10.1016/j.intimp.2013.09.024
Asakura, H., & Ogawa, H. (2021). COVID-19-associated coagulopathy and disseminated intravascular coagulation. International Journal of Hematology, 113(1). https://doi.org/10.1007/s12185-020-03029-y
Barnes, G. D., Burnett, A., Allen, A., Blumenstein, M., Clark, N. P., Cuker, A., Dager, W. E., Deitelzweig, S. B., Ellsworth, S., Garcia, D., Kaatz, S., & Minichiello, T. (2020). Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. Journal of Thrombosis and Thrombolysis, 50(1), 72–81. https://doi.org/10.1007/s11239-020-02138-z
Biswas, S., Thakur, V., Kaur, P., Khan, A., Kulshrestha, S., & Kumar, P. (2021). Blood clots in COVID-19 patients: Simplifying the curious mystery. Medical Hypotheses, 146. https://doi.org/10.1016/j.mehy.2020.110371
Cheah, Y. H., Nordin, F. J., Sarip, R., Tee, T. T., Azimahtol, H. L. P., Sirat, H. M., Rashid, B. A. A., Abdullah, N. R., & Ismail, Z. (2009). Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231. Cancer Cell International, 9, 1–12. https://doi.org/10.1186/1475-2867-9-1
Chen, H. W., Kuo, H. T., Chai, C. Y., Ou, J. L., & Yang, R. C. (2007). Pretreatment of curcumin attenuates coagulopathy and renal injury in LPS-induced endotoxemia. Journal of Endotoxin Research, 13(1), 15–23. https://doi.org/10.1177/0968051907078605
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
Chen, Y., Lu, Y., Lee, R. J., & Xiang, G. (2020). Nano encapsulated curcumin: And its potential for biomedical applications. In International Journal of Nanomedicine (Vol. 15). https://doi.org/10.2147/IJN.S210320
Cui, S., Chen, S., Li, X., Liu, S., & Wang, F. (2020). Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(6), 1421–1424. https://doi.org/10.1111/jth.14830
Di Tano, G., Dede, M., Pellicelli, I., Martinelli, E., Moschini, L., Calvaruso, E., & Danzi, G. B. (2022). Pulmonary embolism in patients with COVID-19 pneumonia on adequate oral anticoagulation. Journal of Thrombosis and Thrombolysis, 53(3). https://doi.org/10.1007/s11239-021-02589-y
Dos Santos, P. D. F., Francisco, C. R. L., Coqueiro, A., Leimann, F. V., Pinela, J., Calhelha, R. C., Porto Ineu, R., Ferreira, I. C. F. R., Bona, E., & Gonçalves, O. H. (2019). The nanoencapsulation of curcuminoids extracted from: Curcuma longa L. and an evaluation of their cytotoxic, enzymatic, antioxidant and anti-inflammatory activities. Food and Function, 10(2). https://doi.org/10.1039/c8fo02431f
Gennaro, F. Di, Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., & Smith, L. (2020). Fasting as a Way to Boost Your Immune System | Universitas Gadjah Mada. International Journal of Environmental Research and Public Health, 17(2690), 1–11.
Godino, C., Scotti, A., Maugeri, N., Mancini, N., Fominskiy, E., Margonato, A., & Landoni, G. (2021). Antithrombotic therapy in patients with COVID-19? -Rationale and Evidence-. International Journal of Cardiology, 324(January), 261–266. https://doi.org/10.1016/j.ijcard.2020.09.064
Gómez-Moreno, D., Adrover, J. M., & Hidalgo, A. (2018). Neutrophils as effectors of vascular inflammation. European Journal of Clinical Investigation, 48(April), 1–14. https://doi.org/10.1111/eci.12940
Grobler, C., Maphumulo, S. C., Grobbelaar, L. M., Bredenkamp, J. C., Laubscher, G. J., Lourens, P. J., Steenkamp, J., Kell, D. B., & Pretorius, E. (2020a). Covid-19: The rollercoaster of fibrin(ogen), d-dimer, von willebrand factor, p-selectin and their interactions with endothelial cells, platelets and erythrocytes. In International Journal of Molecular Sciences (Vol. 21, Issue 14). https://doi.org/10.3390/ijms21145168
Grobler, C., Maphumulo, S. C., Grobbelaar, L. M., Bredenkamp, J. C., Laubscher, G. J., Lourens, P. J., Steenkamp, J., Kell, D. B., & Pretorius, E. (2020b). Covid-19: The rollercoaster of fibrin(ogen), d-dimer, von willebrand factor, p-selectin and their interactions with endothelial cells, platelets and erythrocytes. In International Journal of Molecular Sciences (Vol. 21, Issue 14). https://doi.org/10.3390/ijms21145168
Hess, D. C., Eldahshan, W., & Rutkowski, E. (2020). COVID-19-Related Stroke. In Translational Stroke Research (Vol. 11, Issue 3). https://doi.org/10.1007/s12975-020-00818-9
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Iba, T., Connors, J. M., & Levy, J. H. (2020a). The coagulopathy, endotheliopathy, and vasculitis of COVID-19. In Inflammation Research (Vol. 69, Issue 12). https://doi.org/10.1007/s00011-020-01401-6
Iba, T., Connors, J. M., & Levy, J. H. (2020b). The coagulopathy, endotheliopathy, and vasculitis of COVID-19. In Inflammation Research (Vol. 69, Issue 12). https://doi.org/10.1007/s00011-020-01401-6
Jantan, I., Saputri, F. C., Qaisar, M. N., & Buang, F. (2012). Correlation between chemical composition of curcuma domestica and curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evidence-Based Complementary and Alternative Medicine, 2012(Ldl). https://doi.org/10.1155/2012/438356
Jiménez-Alcázar, M., Rangaswamy, C., Panda, R., Bitterling, J., Simsek, Y. J., Long, A. T., Bilyy, R., Krenn, V., Renné, C., Renné, T., Kluge, S., Panzer, U., Mizuta, R., Mannherz, H. G., Kitamura, D., Herrmann, M., Napirei, M., & Fuchs, T. A. (2017). Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science, 358(6367). https://doi.org/10.1126/science.aam8897
Joly, B. S., Siguret, V., & Veyradier, A. (2020). Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Medicine, 46(8), 1603–1606. https://doi.org/10.1007/s00134-020-06088-1
Karsy, M., Azab, M. A., Harper, J., Abou-Al-Shaar, H., Guan, J., Eli, I., Brock, A. A., Ormond, R. D., Hosokawa, P. W., Gouripeddi, R., Butcher, R., Cole, C. D., Menacho, S. T., & Couldwell, W. T. (2020). Evaluation of a D-Dimer Protocol for Detection of Venous Thromboembolism. World Neurosurgery, 133. https://doi.org/10.1016/j.wneu.2019.09.160
Katsoularis, I., Fonseca-Rodríguez, O., Farrington, P., Jerndal, H., Lundevaller, E. H., Sund, M., Lindmark, K., & Fors Connolly, A. M. (2022a). Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ (Clinical Research Ed.), 377. https://doi.org/10.1136/bmj-2021-069590
Katsoularis, I., Fonseca-Rodríguez, O., Farrington, P., Jerndal, H., Lundevaller, E. H., Sund, M., Lindmark, K., & Fors Connolly, A. M. (2022b). Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ (Clinical Research Ed.), 377. https://doi.org/10.1136/bmj-2021-069590
Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. (2018). Curcumin, hemostasis, thrombosis, and coagulation. In Journal of Cellular Physiology (Vol. 233, Issue 6). https://doi.org/10.1002/jcp.26249
Kim, D. C., Ku, S. K., & Bae, J. S. (2012). Anticoagulant activities of curcumin and its derivative. BMB Reports, 45(4), 221–226. https://doi.org/10.5483/BMBRep.2012.45.4.221
McFadyen, J. D., Stevens, H., & Peter, K. (2020a). The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. In Circulation Research (Vol. 127, Issue 4). https://doi.org/10.1161/CIRCRESAHA.120.317447
McFadyen, J. D., Stevens, H., & Peter, K. (2020b). The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. In Circulation Research (Vol. 127, Issue 4). https://doi.org/10.1161/CIRCRESAHA.120.317447
Mohanty, C., & Sahoo, S. K. (2010). The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials, 31(25). https://doi.org/10.1016/j.biomaterials.2010.04.062
Nilea, S. H., Nilea, A., Qiua, J., Lib, L., Jiac, X., & Kaia, G. (2020). COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine and Growth Factor Reviews, 54(January), 66–70.
Oliveira, M. B., da Silva, J. B., Montanha, M. C., Kimura, E., Diniz, A., & Bruschi, M. L. (2018). Design and Characterization of Mucoadhesive Gelatin-Ethylcellulose Microparticles for the Delivery of Curcumin to the Bladder. Current Drug Delivery, 15(8), 1112–1122. https://doi.org/10.2174/1567201815666180503121043
Omidian, H., Wilson, R. L., & Chowdhury, S. D. (2023). Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications. In Gels (Vol. 9, Issue 8). https://doi.org/10.3390/gels9080596
Paliogiannis, P., Mangoni, A. A., Dettori, P., Nasrallah, G. K., Pintus, G., & Zinellu, A. (2020a). D-dimer concentrations and covid-19 severity: A systematic review and meta-analysis. In Frontiers in Public Health (Vol. 8). https://doi.org/10.3389/fpubh.2020.00432
Paliogiannis, P., Mangoni, A. A., Dettori, P., Nasrallah, G. K., Pintus, G., & Zinellu, A. (2020b). D-dimer concentrations and covid-19 severity: A systematic review and meta-analysis. In Frontiers in Public Health (Vol. 8). https://doi.org/10.3389/fpubh.2020.00432
Pavoni, V., Gianesello, L., Pazzi, M., Stera, C., Meconi, T., & Frigieri, F. C. (2020). Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. Journal of Thrombosis and Thrombolysis, 50(2). https://doi.org/10.1007/s11239-020-02130-7
Peng, S., Li, Z., Zou, L., Liu, W., Liu, C., & McClements, D. J. (2018). Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food and Function, 9(3). https://doi.org/10.1039/c7fo01814b
Peretto, G., Sala, S., & Caforio, A. L. P. (2020). Acute myocardial injury, MINOCA, or myocarditis? Improving characterization of coronavirus-associated myocardial involvement. European Heart Journal, 41(22), 2124–2125. https://doi.org/10.1093/eurheartj/ehaa396
Rajkumari, S., & Sanatombi, K. (2018). Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. In International Journal of Food Properties (Vol. 20). https://doi.org/10.1080/10942912.2017.1387556
Rattis, B. A. C., Ramos, S. G., & Celes, M. R. N. (2021). Curcumin as a Potential Treatment for COVID-19. In Frontiers in Pharmacology (Vol. 12). https://doi.org/10.3389/fphar.2021.675287
Rusdiana, T., Mardhiani, Y. D., Putriana, N. A., Gozali, D., Nagano, D., Araki, T., & Yamamoto, K. (2021). The influence of Javanese turmeric (Curcuma xanthorrhiza) on the pharmacokinetics of warfarin in rats with single and multiple-dose studies. Pharmaceutical Biology, 59(1). https://doi.org/10.1080/13880209.2021.1928716
Sakti, R. A. M., Roslaeni, R., & Harihardjaja, W. (2018a). Pengaruh Ekstrak Kunyit (Curcuma longa) Terhadap Proses Pembekuan Darah Berdasarkan Pemeriksaan Prothrombin Time (PT). Fakultas Kedokteran UNJANI, 1–12.
Sakti, R. A. M., Roslaeni, R., & Harihardjaja, W. (2018b). Pengaruh Ekstrak Kunyit (Curcuma longa) Terhadap Proses Pembekuan Darah Berdasarkan Pemeriksaan Prothrombin Time (PT). Fakultas Kedokteran UNJANI, 1–12.
Schönrich, G., & Raftery, M. J. (2016). Neutrophil extracellular traps go viral. In Frontiers in Immunology (Vol. 7, Issue SEP). https://doi.org/10.3389/fimmu.2016.00366
Singgih Wahono, C., Diah Setyorini, C., Kalim, H., Nurdiana, N., & Handono, K. (2017). Effect of Curcuma xanthorrhiza Supplementation on Systemic Lupus Erythematosus Patients with Hypovitamin D Which Were Given Vitamin D 3 towards Disease Activity (SLEDAI), IL-6, and TGF- β 1 Serum. International Journal of Rheumatology, 2017. https://doi.org/10.1155/2017/7687053
Tang, N., Li, D., Wang, X., & Sun, Z. (2020a). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(4). https://doi.org/10.1111/jth.14768
Tang, N., Li, D., Wang, X., & Sun, Z. (2020b). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(4). https://doi.org/10.1111/jth.14768
Terpos, E., Ntanasis-Stathopoulos, I., Elalamy, I., Kastritis, E., Sergentanis, T. N., Politou, M., Psaltopoulou, T., Gerotziafas, G., & Dimopoulos, M. A. (2020). Hematological findings and complications of COVID-19. American Journal of Hematology, 95(7), 834–847. https://doi.org/10.1002/ajh.25829
Worldometer. (2021). Coronavirus Cases. https://www.worldometers.info/coronavirus/
Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and Multiorgan Response. Current Problems in Cardiology, 45(8), 100618. https://doi.org/10.1016/j.cpcardiol.2020.100618
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020a). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science, 368(6489). https://doi.org/10.1126/science.abb3405
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020b). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science, 368(6489). https://doi.org/10.1126/science.abb3405
Zhang, Y., Xiao, M., Zhang, S., Xia, P., Cao, W., Jiang, W., Chen, H., Ding, X., Zhao, H., Zhang, H., Wang, C., Zhao, J., Sun, X., Tian, R., Wu, W., Wu, D., Ma, J., Chen, Y., Zhang, D., … Zhang, S. (2020). Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. New England Journal of Medicine, 382(17). https://doi.org/10.1056/nejmc2007575
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020a). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229). https://doi.org/10.1016/S0140-6736(20)30566-3
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020b). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229). https://doi.org/10.1016/S0140-6736(20)30566-3
DOI: 10.24815/jks.v23i3.31865
Refbacks
- There are currently no refbacks.