Fish-scale inspired superoleophobic membrane from cellulose: A Review
Abstract
Nature-inspired technology has been investigated widely. Anti biofouling properties of fish scale has inpired to improve membrane performance. Biofouling affects an oil-water separation membrane. The bacterial, coagulant, and hydrophobic oils attach to the membrane surface, demanding periodic cleaning. To overcome the problems, surface modification materials are introduced namely superoleophobic surface. The superoleophobic surface promises antifouling, high flux, and high separation efficiency. Superoleophobic surfaces are inspired by the scales on fish that form a hydrogel-like layer on their surface. The hydrogel repels oil and any organic materials, keeping the surface clean. The hydrogel of fish scales can be mimicked by cellulose-based materials. A dense layer of hydroxyl groups absorbs a lot of water and forms a hydrogel bond. The membrane with the cellulose hydrogel-like structure will perform a superoleophobic characteristic surface. The characteristic can be utilized as a functional membrane for oil-water separation. This article reviews the principle, mechanism, current development, and future challenges of bioinspired superoleophobic surfaces from cellulose-based materials for membrane applications.
Keywords
Full Text:
PDFReferences
Abaie, E., Xu, L. and Shen, Y. (2021) ‘Bioinspired and biomimetic membranes for water purification and chemical separation: A review’, Frontiers of Environmental Science & Engineering, 15(6), p. 124. Available at: https://doi.org/10.1007/s11783-021-1412-8.
Almeida, A.P.C. et al. (2020) ‘All-cellulose composite membranes for oil microdroplet collection’, Cellulose, 27(8), pp. 4665–4677. Available at: https://doi.org/10.1007/s10570-020-03077-x.
Ángeles Esteban, M. (2012) ‘An Overview of the Immunological Defenses in Fish Skin’, ISRN Immunology. Edited by A. Bensussan et al., 2012, p. 853470. Available at: https://doi.org/10.5402/2012/853470.
Ao, C. et al. (2017) ‘Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation’, Carbohydrate Polymers, 175, pp. 216–222. Available at: https://doi.org/10.1016/j.carbpol.2017.07.085.
Ao, C. et al. (2018) ‘Reusable, salt-tolerant and superhydrophilic cellulose hydrogel-coated mesh for efficient gravity-driven oil/water separation’, Chemical Engineering Journal, 338(January), pp. 271–277. Available at: https://doi.org/10.1016/j.cej.2018.01.045.
Ao, C. et al. (2021) ‘Multifunctional La(OH)3@cellulose nanofibrous membranes for efficient oil/water separation and selective removal of dyes’, Separation and Purification Technology, 254(August 2020). Available at: https://doi.org/10.1016/j.seppur.2020.117603.
Atalla, R.H. and VanderHart, D.L. (1984) ‘Native Cellulose: A Composite of Two Distinct Crystalline Forms’, Science, 223(4633), pp. 283–285. Available at: https://doi.org/10.1126/science.223.4633.283.
Bhushan, B. and Nosonovsky, M. (2010) ‘The rose petal effect and the modes of superhydrophobicity’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929), pp. 4713–4728. Available at: https://doi.org/10.1098/rsta.2010.0203.
Cassie, A.B.D. and Baxter, S. (1944) ‘Wettability of porous surfaces’, Transactions of the Faraday Society, 40(0), pp. 546–551. Available at: https://doi.org/10.1039/TF9444000546.
Cassie, A.B.D. and Baxter, S. (1945) ‘Large Contact Angles of Plant and Animal Surfaces’, Nature, 155(3923), pp. 21–22. Available at: https://doi.org/10.1038/155021a0.
Chen, P.C. and Xu, Z.K. (2013) ‘Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation’, Scientific Reports, 3. Available at: https://doi.org/10.1038/srep02776.
Cheng, G. et al. (2017) ‘Molecular Understanding on the Underwater Oleophobicity of Self-Assembled Monolayers: Zwitterionic versus Nonionic’, Langmuir, 33(7), pp. 1732–1741. Available at: https://doi.org/10.1021/acs.langmuir.6b03988.
Cheng, Q. et al. (2017a) ‘Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation’, Journal of Membrane Science, 525(September 2016), pp. 1–8. Available at: https://doi.org/10.1016/j.memsci.2016.11.084.
Cheng, Q. et al. (2017b) ‘Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation’, Journal of Membrane Science, 525(September 2016), pp. 1–8. Available at: https://doi.org/10.1016/j.memsci.2016.11.084.
Dai, L. et al. (2019) ‘A self-assembling guar gum hydrogel for efficient oil/water separation in harsh environments’, Separation and Purification Technology, 225(May), pp. 129–135. Available at: https://doi.org/10.1016/j.seppur.2019.05.070.
Dinand, E. et al. (2002) ‘Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→cellulose II’, Cellulose, 9(1), pp. 7–18. Available at: https://doi.org/10.1023/A:1015877021688.
Ejaz Ahmed, F. et al. (2014a) ‘Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation’, Desalination, 344, pp. 48–54. Available at: https://doi.org/10.1016/j.desal.2014.03.010.
Ejaz Ahmed, F. et al. (2014b) ‘Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation’, Desalination, 344, pp. 48–54. Available at: https://doi.org/10.1016/j.desal.2014.03.010.
Fan, J. et al. (2022) ‘Gecko-inspired adhesive structures enable efficiently thermal conductance and vibration dissipation in a highly mismatched system’, Chemical Engineering Journal, 445, p. 136754. Available at: https://doi.org/10.1016/j.cej.2022.136754.
Fan, J.B. et al. (2015a) ‘Directly Coating Hydrogel on Filter Paper for Effective Oil-Water Separation in Highly Acidic, Alkaline, and Salty Environment’, Advanced Functional Materials, 25(33), pp. 5368–5375. Available at: https://doi.org/10.1002/adfm.201501066.
Fan, J.B. et al. (2015b) ‘Directly Coating Hydrogel on Filter Paper for Effective Oil-Water Separation in Highly Acidic, Alkaline, and Salty Environment’, Advanced Functional Materials, 25(33), pp. 5368–5375. Available at: https://doi.org/10.1002/adfm.201501066.
Fan, T. et al. (2018) ‘Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method’, Carbohydrate Polymers, 200, pp. 63–71. Available at: https://doi.org/10.1016/j.carbpol.2018.07.040.
Fathanah, U. et al. (2020) ‘The Improvement of Hydrophilic Property of Polyethersulfone Membrane with Chitosan as Additive’, Jurnal Rekayasa Kimia dan Lingkungan, 15(1), pp. 53–61. Available at: https://doi.org/10.23955/rkl.v15i1.15916.
Feng, L. et al. (2008) ‘Petal effect: A superhydrophobic state with high adhesive force’, Langmuir, 24(8), pp. 4114–4119. Available at: https://doi.org/10.1021/la703821h.
Fu, B., Yang, Q. and Yang, F. (2020) ‘Flexible Underwater Oleophobic Cellulose Aerogels for Efficient Oil/Water Separation’, ACS Omega, 5(14), pp. 8181–8187. Available at: https://doi.org/10.1021/acsomega.0c00440.
Gao, X., Wen, G. and Guo, Z. (2018a) ‘Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, pp. 115–126. Available at: https://doi.org/10.1016/j.colsurfa.2018.09.041.
Gao, X., Wen, G. and Guo, Z. (2018b) ‘Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, pp. 115–126. Available at: https://doi.org/10.1016/j.colsurfa.2018.09.041.
Gou, X. and Guo, Z. (2020) ‘Hybrid Hydrophilic–Hydrophobic CuO@TiO2-Coated Copper Mesh for Efficient Water Harvesting’, Langmuir, 36(1), pp. 64–73. Available at: https://doi.org/10.1021/acs.langmuir.9b03224.
Halim, A. et al. (2019) ‘Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane’, Separation and Purification Technology, 224(October 2018), pp. 322–331. Available at: https://doi.org/10.1016/j.seppur.2019.05.005.
Halim, A. et al. (2022) ‘Bioinspired cellulose-based membranes in oily wastewater treatment’, Frontiers of Environmental Science & Engineering, 16(7), p. 94. Available at: https://doi.org/10.1007/s11783-021-1515-2.
Halim, A. et al. (2023) ‘Expanded polystyrene waste valorization as a superhydrophobic membrane for oil spill remediation’, Waste and Biomass Valorization, Accepted.
Halim, A., Lin, K.-H. and Enomae, T. (2020) ‘Biomimicking properties of cellulose nanofiber under ethanol/water mixture’, Scientific Reports, 10(1), p. 21070. Available at: https://doi.org/10.1038/s41598-020-78100-z.
Halim, A., Xu, Y. and Enomae, T. (2020) ‘Fabrication of cellulose sponge: Effects of drying process and cellulose nanofiber deposition on the physical strength’, ASEAN Journal of Chemical Engineering, 20(1), pp. 1–10. Available at: https://doi.org/10.22146/ajche.51313.
He, X. et al. (2021) ‘Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers’, Carbohydrate Polymers, 260(October 2020), p. 117790. Available at: https://doi.org/10.1016/j.carbpol.2021.117790.
He, Z., Zhang, X. and Batchelor, W. (2016) ‘Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery’, RSC Advances, 6(26), pp. 21435–21438. Available at: https://doi.org/10.1039/c5ra27413c.
Huang, Y. et al. (2019) ‘Tunicate cellulose nanocrystals modified commercial filter paper for efficient oil/water separation’, Journal of Membrane Science, 591(August). Available at: https://doi.org/10.1016/j.memsci.2019.117362.
Isobe, N. et al. (2012) ‘Mechanism of cellulose gelation from aqueous alkali-urea solution’, Carbohydrate Polymers, 89(4), pp. 1298–1300. Available at: https://doi.org/10.1016/j.carbpol.2012.03.023.
Isobe, N. et al. (2013) ‘Role of urea in alkaline dissolution of cellulose’, Cellulose, 20(1), pp. 97–103. Available at: https://doi.org/10.1007/s10570-012-9800-7.
Jin, H. et al. (2022) ‘Bioinspired marine antifouling coatings: Status, prospects, and future’, Progress in Materials Science, 124, p. 100889. Available at: https://doi.org/10.1016/j.pmatsci.2021.100889.
Kibler, K.M. et al. (2018) ‘Food waste and the food-energy-water nexus: A review of food waste management alternatives’, Waste Management, 74, pp. 52–62. Available at: https://doi.org/10.1016/j.wasman.2018.01.014.
Koh, J.J. et al. (2019) ‘3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications’, ACS Applied Materials and Interfaces, 11(14), pp. 13787–13795. Available at: https://doi.org/10.1021/acsami.9b01753.
Lavoine, N. et al. (2012) ‘Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review’, Carbohydrate Polymers, 90(2), pp. 735–764. Available at: https://doi.org/10.1016/j.carbpol.2012.05.026.
Li, Y. et al. (2019) ‘CO2-Responsive Cellulose Nanofibers Aerogels for Switchable Oil-Water Separation’, ACS Applied Materials and Interfaces, 11(9), pp. 9367–9373. Available at: https://doi.org/10.1021/acsami.8b22159.
Li, Z. et al. (2021) ‘Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation’, Journal of Environmental Chemical Engineering, 9(5), p. 105857. Available at: https://doi.org/10.1016/j.jece.2021.105857.
Lu, F. et al. (2014a) ‘A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil-water separation’, RSC Advances, 4(61), pp. 32544–32548. Available at: https://doi.org/10.1039/c4ra04464a.
Lu, F. et al. (2014b) ‘A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil-water separation’, RSC Advances, 4(61), pp. 32544–32548. Available at: https://doi.org/10.1039/c4ra04464a.
Martini, S. (2022) ‘Membrane Technology for Water Pollution Control: A Review of Recent Hybrid Mechanism’, Jurnal Rekayasa Kimia dan Lingkungan, 17(1), pp. 83–96. Available at: https://doi.org/10.23955/rkl.v17i1.23610.
Padaki, M. et al. (2015) ‘Membrane technology enhancement in oil–water separation. A review’, Desalination, 357, pp. 197–207. Available at: https://doi.org/10.1016/j.desal.2014.11.023.
Peng, H. et al. (2016) ‘A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation’, Applied Physics A: Materials Science and Processing, 122(5), pp. 1–7. Available at: https://doi.org/10.1007/s00339-016-0049-0.
Rohrbach, K. et al. (2014a) ‘A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation’, Chemical Communications, 50(87), pp. 13296–13299. Available at: https://doi.org/10.1039/c4cc04817b.
Rohrbach, K. et al. (2014b) ‘A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation’, Chemical Communications, 50(87), pp. 13296–13299. Available at: https://doi.org/10.1039/c4cc04817b.
Sam, E.K., Liu, J. and Lv, X. (2021) ‘Surface Engineering Materials of Superhydrophobic Sponges for Oil/Water Separation: A Review’, Industrial & Engineering Chemistry Research, 60(6), pp. 2353–2364. Available at: https://doi.org/10.1021/acs.iecr.0c05906.
Scanlon, B.R. et al. (2017) ‘The food-energy-water nexus: Transforming science for society’, Water Resources Research, 53(5), pp. 3550–3556. Available at: https://doi.org/10.1002/2017WR020889.
Shen, D. et al. (2018) ‘Green Synthesis of Fe3O4/Cellulose/Polyvinyl Alcohol Hybride Aerogel and Its Application for Dye Removal’, Journal of Polymers and the Environment, 26(6), pp. 2234–2242. Available at: https://doi.org/10.1007/s10924-017-1116-0.
Sugiyama, J., Persson, J. and Chanzy, H. (1991) ‘Combined infrared and electron diffraction study of the polymorphism of native celluloses’, Macromolecules, 24(9), pp. 2461–2466. Available at: https://doi.org/10.1021/ma00009a050.
Tuteja, A. et al. (2007) ‘Designing Superoleophobic Surfaces’, Science, 318(5856), p. 1618 LP – 1622. Available at: https://doi.org/10.1126/science.1148326.
Waghmare, P.R., Gunda, N.S.K. and Mitra, S.K. (2014) ‘Under-water superoleophobicity of fish scales’, Scientific Reports, 4. Available at: https://doi.org/10.1038/srep07454.
Wahid, F. et al. (2021) ‘Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation’, Carbohydrate Polymers, 257, p. 117611. Available at: https://doi.org/10.1016/j.carbpol.2020.117611.
Wang, C.F., Yang, S.Y. and Kuo, S.W. (2017a) ‘Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions’, Scientific Reports, 7(February), pp. 1–9. Available at: https://doi.org/10.1038/srep43053.
Wang, C.F., Yang, S.Y. and Kuo, S.W. (2017b) ‘Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions’, Scientific Reports, 7(February), pp. 1–9. Available at: https://doi.org/10.1038/srep43053.
Wang, G. et al. (2015a) ‘A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation’, Green Chemistry, 17(5), pp. 3093–3099. Available at: https://doi.org/10.1039/c5gc00025d.
Wang, G. et al. (2015b) ‘A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation’, Green Chemistry, 17(5), pp. 3093–3099. Available at: https://doi.org/10.1039/c5gc00025d.
Wang, L. et al. (2020) ‘Recent advances in Gecko-inspired adhesive materials and application’, Journal of Adhesion Science and Technology, 34(21), pp. 2275–2291. Available at: https://doi.org/10.1080/01694243.2020.1760478.
Wang, M. et al. (2022) ‘Influence of the freezing and lyophilization of bacterial cellulose hydrogel on water removal from both water-in-oil and oil-in-water emulsion’, Cellulose, 29(11), pp. 5979–5990. Available at: https://doi.org/10.1007/s10570-022-04642-2.
Wang, W., Liu, Y. and Xie, Z. (2021) ‘Gecko-Like Dry Adhesive Surfaces and Their Applications: A Review’, Journal of Bionic Engineering, 18(5), pp. 1011–1044. Available at: https://doi.org/10.1007/s42235-021-00088-7.
Wang, Z., Elimelech, M. and Lin, S. (2016) ‘Environmental Applications of Interfacial Materials with Special Wettability’, Environmental Science and Technology, 50(5), pp. 2132–2150. Available at: https://doi.org/10.1021/acs.est.5b04351.
Wenzel, R.N. (1949) ‘Surface roughness and contact angle’, Journal of Physical & Colloid Chemistry, 53(9), pp. 1466–1467. Available at: https://doi.org/10.1021/j150474a015.
Xi, J. et al. (2021) ‘Underwater superoleophobic all-cellulose composite papers for the separation of emulsified oil’, Cellulose, 28(7), pp. 4357–4370. Available at: https://doi.org/10.1007/s10570-021-03768-z.
Xi, J. et al. (2023) ‘High-flux bacterial cellulose ultrafiltration membrane with controllable pore structure’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, p. 130428. Available at: https://doi.org/10.1016/j.colsurfa.2022.130428.
Xie, X. et al. (2020) ‘Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation’, Carbohydrate Polymers, 229, p. 115467. Available at: https://doi.org/10.1016/j.carbpol.2019.115467.
Xu, X. et al. (2019) ‘Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment’, Journal of Cleaner Production, 211, pp. 1463–1470. Available at: https://doi.org/10.1016/j.jclepro.2018.11.284.
Yang, J. et al. (2020) ‘An acid–alkali–salt resistant cellulose membrane by rapidly depositing polydopamine and assembling BaSO4 nanosheets for oil/water separation’, Cellulose, 27(9), pp. 5169–5178. Available at: https://doi.org/10.1007/s10570-020-03114-9.
Yang, J. et al. (2021) ‘Facile preparation of superhydrophilic/underwater superoleophobic cellulose membrane with CaCO3 particles for oil/water separation’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608, p. 125583. Available at: https://doi.org/10.1016/j.colsurfa.2020.125583.
Yi, G. et al. (2019) ‘Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater’, Frontiers of Environmental Science & Engineering, 13(2), p. 23. Available at: https://doi.org/10.1007/s11783-019-1103-x.
Yin, X. et al. (2022) ‘A microgel-structured cellulose nanofibril coating with robust antifouling performance for highly efficient oil/water and immiscible organic solvent separation’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, p. 128875. Available at: https://doi.org/10.1016/j.colsurfa.2022.128875.
Yin, Y. et al. (2016) ‘Superhydrophobic–superhydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate’, Chemical Engineering Journal, 289, pp. 99–105. Available at: https://doi.org/10.1016/j.cej.2015.12.049.
Young, T. (1805) ‘III. An essay on the cohesion of fluids’, Philosophical Transactions of the Royal Society of London, 95, pp. 65–87. Available at: https://doi.org/10.1098/rstl.1805.0005.
Yu, Y. et al. (2022) ‘Robust and Versatile Cellulose Aerogel with a Self-Wettable Surface for Efficient Dual Separations of Oil-in-Water and Water-in-Oil Emulsions’, ACS Applied Polymer Materials, 4(3), pp. 1657–1665. Available at: https://doi.org/10.1021/acsapm.1c01490.
Zhan, H. et al. (2018) ‘UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion’, Carbohydrate Polymers, 201, pp. 464–470. Available at: https://doi.org/10.1016/j.carbpol.2018.08.093.
Zhang, F. and Guo, Z. (2020) ‘Bioinspired materials for water-harvesting: focusing on microstructure designs and the improvement of sustainability’, Materials Advances, 1(8), pp. 2592–2613. Available at: https://doi.org/10.1039/D0MA00599A.
Zhang, L. et al. (2013) ‘A self-cleaning underwater superoleophobic mesh for oil-water separation’, Scientific Reports, 3. Available at: https://doi.org/10.1038/srep02326.
Zhang, S. et al. (2023) ‘Preparation of cellulose/chitosan superoleophobic aerogel with cellular pores for oil/water separation’, Industrial Crops and Products, 194, p. 116303. Available at: https://doi.org/10.1016/j.indcrop.2023.116303.
Zhang, Y. et al. (2022) ‘Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric’, Nano Letters, 22(7), pp. 2618–2626. Available at: https://doi.org/10.1021/acs.nanolett.1c04143.
Zhang, Y. et al. (2023) ‘Underwater superoleophobic paper-based materials with controllable pore structure for emulsified oil separation’, Cellulose, 30(1), pp. 277–288. Available at: https://doi.org/10.1007/s10570-022-04885-z.
Zhou, K. et al. (2014) ‘Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions’, Nanoscale, 6(17), pp. 10363–10369. Available at: https://doi.org/10.1039/c4nr03227f.
Zhu, D. et al. (2017) ‘One-step removal of insoluble oily compounds and water-miscible contaminants from water by underwater superoleophobic graphene oxide-coated cotton’, Cellulose, 24(12), pp. 5605–5614. Available at: https://doi.org/10.1007/s10570-017-1514-4.
Zhuang, G.L. et al. (2020) ‘Gluconacetobacter xylinus synthesized biocellulose nanofiber membranes with superhydrophilic and superoleophobic underwater properties for the high-efficiency separation of oil/water emulsions’, Journal of Membrane Science, 605(1), p. 118091. Available at: https://doi.org/10.1016/j.memsci.2020.118091.
DOI: https://doi.org/10.23955/rkl.v18i1.26920
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Abdul Halim, Maya Ismayati, Nabil Septian Medy, Toshiharu Enomae
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL REKAYASA KIMIA & LINGKUNGAN
Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA
PRINCIPAL CONTACT
Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.usk.ac.id, nasrular@usk.ac.id
SUPPORT CONTACT
Mirna Rahmah Lubis
E-mail: mirna@che.usk.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.usk.ac.id