Microalgae as A Bioremediation Agent for Palm Oil Mill Effluent: Production of Biomass and High Added Value Compounds
Abstract
Palm oil mill effluent (POME) is high strength wastewater obtained from palm fruit processing, which contains high chemical oxygen demand (COD), biological oxygen demand (BOD), and other contaminants. The pollutant load in POME can serve as a source of nutrients for microalgae growth. As a result, the goal of this work was to utilize Spirulina sp. and Nannochloropsis oculata to reduce the nutritional content of POME while producing biomass rich in high-value chemicals. The cultivation was conducted in a batch reactor using various POME fractions (0-20%) under 5,000 lux light intensity and continuous aeration at a temperature of 22-28°C and a salinity of 30 ppt for 14 consecutive-days. The results demonstrate that Spirulina sp. produced the most biomass at 15% POME, accounting for 4.67±0.95 g/L with 0.57±0.11 1/day of growth rate and 3.33% of COD reduction efficiency. Meanwhile, Nannochloropsis oculata thrived in 20% POME, producing 4.43±0.36 g/L biomass, 1.18±0.31 1/day growth rate, and 14.43% COD reduction efficiency. In the proximate analysis. Spirulina sp. and Nannochlorpsis oculata provided 0.87%; 1.11% lipid and 1.03%; 0.86% protein, respectively.
Keywords
Full Text:
PDFReferences
A, A., Khaswar, S., & D, S. (2023). Biomass and phycocyanin production from microalgae Spirulina platensis using POME slurry waste Biomass and phycocyanin production from microalgae Spirulina platensis using POME slurry waste. IOP Conference Series: Earth and Environmental Science, 1–10.
Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/10.1016/ j.sjbs.2012.04.005
Abdulsalam, M., Man, H. C., Idris, A. I., Yunos, K. F., & Abidin, Z. Z. (2018). Treatment of palm oil mill effluent using membrane bioreactor: Novel processes and their major drawbacks. Water (Switzerland), 10(9), 1–46. https://doi.org/10.3390/ w10091165
Ahmad, A., Shah, S. M. U., Othman, M. F., & Abdullah, M. A. (2015). Aerobic and anaerobic co-cultivation of Nannochloropsis oculata with oil palm empty fruit bunch for enhanced biomethane production and palm oil mill effluent treatment. Desalination and Water Treatment, 56(8), 2055–2065. https://doi.org/10.1080/19443994.2014.960458
Alam, M. A., Rahmat, N. A., Mijin, S., Rahman, M. S., & Hasan, M. M. (2022). Influence of Palm Oil Mill Effluent (POME) on growth and yield performance of Brazilian spinach (Alternanthera sissoo). Journal Of Agrobiotechnology, 13(1), 40–49. https://doi.org/10.37231/ jab.2022.13.1.287
Baumgardt, F. J. L., Filho, A. Z., Brandalize, M. V, da Costa, D. C., Antoniosi Filho, N. R., Abreu, P. C. O. V, Corazza, M. L., & Ramos, L. P. (2016). Lipid content and fatty acid profile of Nannochloropsis oculata before and after extraction with conventional solvents and/or compressed fluids. The Journal of Supercritical Fluids, 108, 89–95. https://doi.org/10.1016/j.supflu.2015.11.003
Buwono, N. R., & Nurhasanah, R. Q. (2018). Studi Pertumbuhan Populasi Spirulina sp. pada Skala Kultur yang Berbeda Study of Spirulina sp. Population Growth in The Different Culture Scale. Jurnal Ilmiah Perikanan Dan Kelautan, 10(1), 1. https://doi.org/10.20473/jipk.v10i1. 8202
Cecchin, M., Berteotti, S., Paltrinieri, S., Vigliante, I., Iadarola, B., Giovannone, B., Maffei, M. E., Delledonne, M., & Ballottari, M. (2020). Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels, 13(1), 78. https://doi.org/10.1186/s13068-020-01718-8
Cheah, W. Y., Show, P. L., Juan, J. C., Chang, J. S., & Ling, T. C. (2018). Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Conversion and Management, 174(June), 430–438. https://doi.org/10.1016/j.enconman.2018.08.057
Chowdury, K. H., Nahar, N., & Deb, U. K. (2020). The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review. Computational Water, Energy, and Environmental Engineering, 09(04), 185–215. https://doi.org/10.4236/cweee.2020.94012
Christwardana, M., & Hadiyanto, H. (2022). Cultivating Microalgae Botryococcus braunii in Tofu Whey Medium. Journal of Bioresources and Environmental Sciences, 1(1), 12–19. https://doi.org/ 10.14710/jbes.2022.14234
Dayana, M. E., Singkam, A. R., & Jumiarni, D. (2022). Keanekaragaman Mikroalga sebagai Bioindikator di Perairan Sungai. BIOEDUSAINS:Jurnal Pendidikan Biologi Dan Sains, 5(1), 77–84. https://doi.org/ 10.31539/bioedusains.v5i1.3531
Dewi, R. N., Mahreni, Nur, M. M. A., Siahaan, A. A., & Ardhi, A. C. (2022). Enhancing the biomass production of microalgae by mixotrophic cultivation using virgin coconut oil mill effluent. Environmental Engineering Research, 28(2), 220050–220059. https://doi.org/10.4491/ eer.2022.059
Discart, V., Bilad, M. R., Marbelia, L., & Vankelecom, I. F. J. (2014). Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresource Technology, 152, 321–328.
Effendi, I., Nurrachmi, I., & Tarigan, A. N. F. (2021). Growth of Microalgae Spirulina platensis on Media Containing Palm Oil Mill Effluent. IOP Conference Series: Earth and Environmental Science, 695(1), 12039. https://doi.org/10.1088/ 1755-1315/695/1/012039
Emparan, Q., Harun, R., & Jye, Y. S. (2019). Phycoremediation of treated palm oil mill effluent (TPOME) using Nannochloropsis sp. cells immobilized in the biological sodium alginate beads: Effect of POME concentration. BioResources, 14(4), 9429–9443. https://doi.org/10.15376/ biores.14.4.9429-9443
Erlangga, H. F., Elystia, S., & Muria, S. R. (2019). Pengaruh Konsentrasi Palm Oil Mill Effluent (Pome) Dan Komposisi Jumlah Nutrien Untuk Media Kultur Chlorella Pyrenoidosa Sebagai Bahan Baku Biofuel. JOM FTEKNIK, 6(1 Januari s/d Juni 2019), 1–8.
Gramegna, G., Scortica, A., Scafati, V., Ferella, F., Gurrieri, L., Giovannoni, M., Bassi, R., Sparla, F., Mattei, B., & Benedetti, M. (2020). Exploring the potential of microalgae in the recycling of dairy wastes. Bioresource Technology Reports, 12(November), 100604. https://doi.org/10.1016/j.biteb.2020.100604
Hadiyanto, H, Soetrisnanto, D., & Christwardhana, M. (2014). Phytoremediation of Palm Oil Mill Effluent Using Pistia Stratiotes Plant and Algae Spirulina sp for Biomass Production. International Journal of Engineering, 27(12), 1809–1814.
Hadiyanto, Hadiyanto, Soetrinanto, D., Silviana, S., Mahdi, M. Z., & Titisari, Y. N. (2017). Evaluation of growth and biomass productivity of marine microalga Nannochloropsis sp. cultured in palm oil mill effluent (POME). Philippine Journal of Science, 146(4), 355–360.
Hamidi, M., Mohammadi, A., Mashhadi, H., & Mahmoudnia, F. (2023). Evaluation of effective environmental parameters on lipid, protein and beta-carotene production in Spirulina platensis microalga. Results in Engineering, 18(April), 101102. https://doi.org/ 10.1016/j.rineng.2023.101102
Heredia-Arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35(5), 2245–2253. https://doi.org/10.1016/j.biombioe.2011.02.036
Istirokhatun, T., Aulia, M., & Utomo, S. (2017). Potensi Chlorella Sp. untuk Menyisihkan COD dan Nitrat dalam Limbah Cair Tahu. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 14(2), 88. https://doi.org/10.14710/presipitasi.v14i2.88-96
Khatiwada, D., Palmén, C., & Silveira, S. (2021). Evaluating the palm oil demand in Indonesia: production trends, yields, and emerging issues. Biofuels, 12(2), 135–147. https://doi.org/10.1080/ 17597269.2018.1461520
Lee, E., Jalalizadeh, M., & Zhang, Q. (2015). Growth kinetic models for microalgae cultivation: A review. Algal Research, 12, 497–512. https://doi.org/10.1016/ j.algal.2015.10.004
Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy, M., Chen, P., Chen, D., & Ruan, R. (2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291(July), 121934. https://doi.org/10.1016/ j.biortech.2019.121934
Liestianty, D., Rodianawati, I., Arfah, R. A., Assa, A., Patimah, Sundari, & Muliadi. (2019). Nutritional analysis of spirulina sp to promote as superfood candidate. IOP Conference Series: Materials Science and Engineering, 509, 12031. https://doi.org/10.1088/1757-899X/509/1/012031
Low, S. S., Bong, K. X., Mubashir, M., Cheng, C. K., Lam, M. K., Lim, J. W., Ho, Y. C., Lee, K. T., Munawaroh, H. S. H., & Show, P. L. (2021). Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production. Sustainability, 13(6), 3247. https://doi.org/10.3390/ su13063247
Ma, X.-N., Chen, T.-P., Yang, B., Liu, J., & Chen, F. (2016). Lipid Production from Nannochloropsis. Marine Drugs, 14(4), 61. https://doi.org/10.3390/ md14040061
Mahdi, M. Z., Titisari, Y. N., Hadiyanto, H., & Christwardana, M. (2022). Evaluation Of Spirulina, Nannochloropsis, and Chlorella Micro-algae Growth in Palm Oil Mill Effluent (POME) Medium with Variation of Medium Types and Time Adding Nutrient. Journal of Bioresources and Environmental Sciences, 1(1), 27–32. https://doi.org/10.14710/jbes.2022.14239
Nur, M. M. A., Djarot, I. N., Boelen, P., Hadiyanto, & Heeres, H. J. (2022). Co-cultivation of microalgae growing on palm oil mill effluent under outdoor condition for lipid production. Environmental Pollutants and Bioavailability, 34(1), 537–548. https://doi.org/10.1080/26395940.2022.2147098
Nur, M. M. A., Rahmawati, S. D., Sari, I. W., Achmad, Z., Setyoningrum, T. M., Jaya, D., Murni, S. W., & Djarot, I. N. (2023). Enhancement of phycocyanin and carbohydrate production from Spirulina platensis growing on tofu wastewater by employing mixotrophic cultivation condition. Biocatalysis and Agricultural Biotechnology, 47(December 2022), 102600. https://doi.org/10.1016/ j.bcab.2023.102600
Nur, M. M. A., Swaminathan, M. K., Boelen, P., & Buma, A. G. J. (2019). Sulfated exopolysaccharide production and nutrient removal by the marine diatom Phaeodactylum tricornutum growing on palm oil mill effluent. Journal of Applied Phycology, 31(4), 2335–2348. https://doi.org/10.1007/s10811-019-01780-2
Nwuche, C. (2014). Use of Palm Oil Mill Effluent as Medium for Cultivation of Chlorella sorokiniana. British Biotechnology Journal, 4(3), 305–316. https://doi.org/10.9734/BBJ/2014/6921
Palanisamy, K. M., Paramasivam, P., Jayakumar, S., Maniam, G. P., Rahim, M. H. A., & Govindan, N. (2021). Economical cultivation system of microalgae Spirulina platensis for lipid production. IOP Conference Series: Earth and Environmental Science, 641(1). https://doi.org/10.1088/1755-1315/ 641/1/012022
Palanisamy, Karthick Murugan, Bhuyar, P., Ab. Rahim, M. H., Govindan, N., & Maniam, G. P. (2023). Cultivation of Microalgae Spirulina platensis Biomass Using Palm Oil Mill Effluent for Phycocyanin Productivity and Future Biomass Refinery Attributes. International Journal of Energy Research, 2023, 1–9. https://doi.org/10.1155/2023/2257271
Pradana, Y. S., Dewi, R. N., Di Livia, K., Arisa, F., Rochmadi, Cahyono, R. B., & Budiman, A. (2020). Advancing biodiesel production from microalgae Spirulina sp. By a simultaneous extraction-transesterification process using palm oil as a co-solvent of methanol. Open Chemistry, 18(1), 833–842. https://doi.org/10.1515/chem-2020-0133
Putra, Y., Mustikasari, I., Pangestuti, R., Rahmadi, P., & Siahaan, E. A. (2022). Fatty acid profiles and biological activity of Nannochloropsis oculata and Isochrysis galbana, clone t-ISO. IOP Conference Series: Earth and Environmental Science, 1083(1). https://doi.org/10.1088/1755-1315/ 1083/1/012079
Rajkumar, R., & Takriff, M. (2015). Nutrient Removal from Anaerobically Treated Palm Oil Effluent by Spirulina plantesis and Scenedesmus dimorphus. Der Pharmacia Lettre, 7(7), 416–421.
Randrianarison, G., & Ashraf, M. A. (2017). Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes, 1(2), 104–120. https://doi.org/10.1080/24749508.2017.1332853
Salama, E. S., Kurade, M. B., Abou-Shanab, R. A. I., El-Dalatony, M. M., Yang, I. S., Min, B., & Jeon, B. H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 79(May), 1189–1211. https:// doi.org/10.1016/j.rser.2017.05.091
Samanta, A., Ojha, K., Sarkar, A., & Mandal, A. (2013). Mobility control and enhanced oil recovery using partially hydrolysed polyacrylamide (PHPA). International Journal of Oil, Gas and Coal Technology, 6(3), 245. https://doi.org/10.1504/ IJOGCT.2013.052236
Sari, F. Y. A., Suryajaya, I. M. A., Christwardana, M., & Hadiyanto, H. (2022). Cultivation of Microalgae Spirulina platensis in Palm Oil Mill Effluent (POME) Media with Variations of POME Concentration and Nutrient Composition. Journal of Bioresources and Environmental Sciences, 1(2), 57–62. https://doi.org/10.14710/jbes.2022.15052
Shah, S., Ahmad, A., Othman, M., & Abdullah, M. (2014). Enhancement of Lipid Content in Isochrysis Galbana and Pavlova Lutheri Using Palm Oil Mill Effluent as an Alternative Medium. Chemical Engineering Transactions, 37, 733–738.
Sofiyah, E. S., & Suryawan, I. W. K. (2021). Cultivation of Spirulina platensis and Nannochloropsis oculata for nutrient removal from municipal wastewater. Rekayasa, 14(1), 93–97. https://doi.org/10.21107/rekayasa.v14i1.8882
Suharyanto, Tri-Panji, Permatasari, S., & Syamsu, K. (2014). Produksi Spirulina platensis dalam fotobioreaktor kontinyu menggunakan media limbah cair pabrik kelapa sawit. Menara Perkebunan, 82(1), 1–9.
Suherman, S. P., Bunajir, B., Hasim, H., & Arsad, S. (2022). Protein content of Spirulina sp. Cultured Using a Combination of Urea and TSP Fertilizers. Journal of Aquaculture and Fish Health, 11(2), 269–276. https://doi.org/10.20473/jafh.v11i2.33307
Sukmawan, M. A., Antara, N. semedi, & Arnata, I. wayan. (2014). Optimization Salinity and Initial pH on the Biomass Production of Nannochloropsis sp. K-4. Jurnal Rekayasa Dan Manajemen Agroindustri, 2(1), 19–28.
Susilo, F. A. P., Suharto, B., & Dewi Susanawati, L. (2016). Pengaruh Variasi Waktu Tinggal Terhadap Kadar BOD dan COD Limbah Tapioka dengan Metode Rotating Biological Contactor. Jurnal Sumber Daya Alam Dan Lingkungan, 21–26.
Takriff, M. S., Zakaria, M. Z., Sajab, M. S., & Teow, Y. H. (2016). Pre-treatments Anaerobic Palm Oil Mill Effluent (POME) for Microalgae Treatment. Indian Journal of Science and Technology, 9(21). https://doi.org/10.17485/ijst/2016/v9i21/95248
Tawfik, A., Ismail, S., Elsayed, M., Qyyum, M. A., & Rehan, M. (2022). Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives. Chemosphere, 296(November 2021), 133812. https://doi.org/10.1016/j.chemosphere.2022.133812
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162(4), 1174–1186. https://doi.org/10.1007/ s12010-009-8866-7
Wang, S. K., Wang, X., Miao, J., & Tian, Y. T. (2018). Tofu whey wastewater is a promising basal medium for microalgae culture. Bioresource Technology, 253(December 2017), 79–84. https://doi.org/10.1016/j.biortech.2018.01.012
Widihastuti, A., Satria, B., Yulianti, R., & Tjahjaningsih, W. (2022). Growth Rate of Microalgae Nannochloropsis oculata at Different Culture Scales. 7(October), 74–82.
DOI: https://doi.org/10.23955/rkl.v18i2.34018
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nita Ariestiana Putri, Resti Nurmala Dewi, Rizka Lestari, Rizka Ayu Yuniar, Luluk Majidah Ma'arif, Ricky Erianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL REKAYASA KIMIA & LINGKUNGAN
Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA
PRINCIPAL CONTACT
Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.usk.ac.id, nasrular@usk.ac.id
SUPPORT CONTACT
Mirna Rahmah Lubis
E-mail: mirna@che.usk.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.usk.ac.id