Carbon Dioxide (CO2) Separation Study Using Chemically Activated Serpentine as an Adsorbent
Abstract
The increase in carbon emissions resulting from industrial activities has become a major concern for environmental and climate conditions. Carbon Capture and Storage (CCS) represents a significant effort to mitigate the CO2 problem. Aceh Province possesses a potential distribution of serpentine, which may serve as an effective material for CCS applications. This study evaluates the effects of gas flow rate, particle size, sorbent weight, and pressure on CO2 adsorption using chemically activated serpentine. The activation process involved hydrochloric acid (HCl) at three concentrations: 8%, 9%, and 10%, with particle sizes of 50 mesh, 100 mesh, and 150 mesh. Activation was conducted at room temperature with an acid-to-serpentine ratio of 10:1 for 30 minutes. Adsorption tests were performed at ambient temperature under pressures of 2, 3, and 4 bar, with adsorption times of 30, 60, and 120 minutes. Results indicate that activated serpentine treated with 9% HCl and a particle size of 150 mesh achieved the highest performance, demonstrating an adsorption efficiency of 33.01% and an adsorption capacity of 82.22% (0.0488 g CO2/g adsorbent) at a pressure of 2 bar. Both the Langmuir and Freundlich isotherm models closely fit the data (R² = 1). This study concludes that HCl activation significantly enhances the capacity and efficiency of serpentine as a CO2 adsorbent.
Keywords
Full Text:
PDFReferences
Abdullah, M.F., (2023) Physicochemical and adsorption properties of guava leaves-activated carbon by hydrochloric acid on adsorption of methylene blue. Scientific Research Journal 20, 33–49. https://doi.org/10.24191/srj.v20i1.20669
Ammendola, P., Raganati, F., Chirone, R., (2017) CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: Thermodynamics and kinetics. Chemical Engineering Journal 322, 302–313. https://doi.org/10.1016/j.cej.2017.04.037
Ardiansyah, E.Y., Syafriadi, S., Tibri, T., Eka Onwardana, M., Sungen, S., (2019) POTENSI SERPENTINIT UNTUK PEMANFAATAN BAHAN BAKU PUPUK MINERAL. Saintek ITM 32. https://doi.org/10.37369/si.v32i1.53
Beglaryan, H., Isahakyan, A., Zulumyan, N., Melikyan, S., Terzyan, A., (2023) A study of magnesium dissolution from serpentinites composed of different serpentine group minerals. Minerals Engineering 201, 108171. https://doi.org/10.1016/j.mineng.2023.108171
Burke, A., Fishel, S., (2020) A coal elimination treaty 2030: Fast tracking climate change mitigation, global health and security. Earth System Governance 3, 100046. https://doi.org/10.1016/j.esg.2020.100046
Daval, D., Hellmann, R., Martinez, I., Gangloff, S., Guyot, F., (2013) Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chemical Geology 351, 245–256. https://doi.org/10.1016/j.chemgeo.2013.05.020
Du, X., Cheng, Y., Liu, Z., Yin, H., Wu, T., Huo, L., Shu, C., (2021) CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss. Fuel 283, 118886. https://doi.org/10.1016/j.fuel.2020.118886
Esmaeili, F., Gholami, M., Hojjat, M., (2019) Accelerated CO2 capture on adsorbent coated finned tube: An experimental study. Energy 187, 116014. https://doi.org/10.1016/j.energy.2019.116014
Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.E., Leoni, M., Lesci, I.G., Roveri, N., (2004) Tubular-shaped stoichiometric chrysotile nanocrystals. Chemistry - A European Journal 10, 3043–3049. https://doi.org/10.1002/chem.200305685
Fatima, S.S., Borhan, A., Ayoub, M., Ghani, N.A., (2023) Modeling of CO2 Adsorption on Surface-Functionalized Rubber-Seed Shell Activated Carbon: Isotherm and Kinetic Analysis. Processes 11. https://doi.org/10.3390/pr11102833
Goel, C., Tiwari, D., Bhunia, H., Bajpai, P.K., (2017) Pure and Binary Gas Adsorption Equilibrium for CO2-N2 on Oxygen Enriched Nanostructured Carbon Adsorbents. Energy and Fuels 31, 13991–13998. https://doi.org/10.1021/acs.energyfuels.7b02671
Hafeez, S., Fan, X., Hussain, A., Martín, C.F., (2015) CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study. Journal of Environmental Sciences (China) 35, 163–171. https://doi.org/10.1016/j.jes.2015.04.019
Hazra, B., Wood, D.A., Vishal, V., Singh, A.K., (2018) Pore Characteristics of Distinct Thermally Mature Shales: Influence of Particle Size on Low-Pressure CO2 and N2 Adsorption, Energy and Fuels. https://doi.org/10.1021/acs.energyfuels.8b01439
Heidari, A., Younesi, H., Rashidi, A., Ghoreyshi, A.A., (2014) Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chemical Engineering Journal 254, 503–513. https://doi.org/10.1016/j.cej.2014.06.004
Hernández-Espinosa, M.A., Quiroz-Estrada, K., Petranovskii, V., Rojas, F., Portillo, R., Salgado, M.A., Marcelo, M., Rubio, E., Felipe, C., (2018) Adsorption of N2, No2 and Co2 on epistilbite natural zeolite from Jalisco, Mexico after acid treatment. Minerals 8. https://doi.org/10.3390/min8050196
Ho, Y.., McKay, G., (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5
Khalili, S., Khoshandam, B., Jahanshahi, M., (2015) Optimization of production conditions for synthesis of chemically activated carbon produced from pine cone using response surface methodology for CO2 adsorption. RSC Advances 5, 94115–94129. https://doi.org/10.1039/c5ra18986a
Kiełbasa, K., Bayar, Ş., Varol, E.A., Sreńscek-Nazzal, J., Bosacka, M., Miądlicki, P., Serafin, J., Wróbel, R.J., Michalkiewicz, B., (2022) Carbon Dioxide Adsorption over Activated Carbons Produced from Molasses Using H2SO4, H3PO4, HCl, NaOH, and KOH as Activating Agents. Molecules 27. https://doi.org/10.3390/molecules27217467
Kim, K.H., Kim, M.H., (2023) Adsorption of CO2, CO, H2, and N2 on Zeolites, Activated Carbons, and Metal-Organic Frameworks with Different Surface Nonuniformities. Sustainability 15, 11574. https://doi.org/10.3390/su151511574
Konlechner, D., Kappacher, G., (2021) Achieving the Carbon-Neutral Production of Magnesia and Silica Products Using a HCl-Based Process in Serpentine Feedstock 19. https://doi.org/10.3390/materproc2021005019
Lacinska, A.M., Styles, M.T., Bateman, K., Wagner, D., Hall, M.R., Gowing, C., Brown, P.D., (2016) Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralisation. Chemical Geology 437, 153–169. https://doi.org/10.1016/j.chemgeo.2016.05.015
Li, J., Hitch, M., (2016) Carbon dioxide adsorption isotherm study on mine waste for integrated CO2 capture and sequestration processes. Powder Technology 291, 408–413. https://doi.org/10.1016/j.powtec.2015.12.011
Li, J., Hitch, M., (2015) Carbon dioxide sorption isotherm study on pristine and acid-treated olivine and its application in the vacuum swing adsorption process. Minerals 5, 259–275. https://doi.org/10.3390/min5020259
Li, J., Yang, Y., Wen, Y., Liu, W., Chu, Y., Wang, R., Xu, Z., (2020) Leaching kinetics and mechanism of laterite with NH4 Cl-HCl solution. Minerals 10, 1–11. https://doi.org/10.3390/min10090754
Li, L., Si, J., Li, Z., Cheng, G., Chen, J., (2023) Experimental Study on Influencing Factors and Thermal Effects of CO2 Adsorption by Coal. ACS Omega 8, 21906–21913. https://doi.org/10.1021/acsomega.3c01693
Li, S., Deng, S., Zhao, L., Yuan, X., Yun, H., (2020) How to express the adsorbed CO2 with the Gibbs’ thermodynamic graphical method: A preliminary study. Energy 193, 116753. https://doi.org/10.1016/j.energy.2019.116753
Li, Y., Wang, W., Cheng, X., Su, M., Ma, X., Xie, X., (2015) Simultaneous CO2/HCl removal using carbide slag in repetitive adsorption/desorption cycles. Fuel 142, 21–27. https://doi.org/10.1016/j.fuel.2014.10.071
Lin, P.C., Huang, C.W., Hsiao, C.T., Teng, H., (2008) Magnesium hydroxide extracted from a magnesium-rich mineral for CO 2 sequestration in a gas-solid system. Environmental Science and Technology 42, 2748–2752. https://doi.org/10.1021/es072099g
Liu, B., Guo, W., Wang, H., Si, Q., Zhao, Q., Luo, H., Ren, N., (2020) B-doped graphitic porous biochar with enhanced surface affinity and electron transfer for efficient peroxydisulfate activation. Chemical Engineering Journal 396, 125119. https://doi.org/10.1016/j.cej.2020.125119
Muslim, A., Purnawan, E., Nasrullah, Meilina, H., Azwar, M.Y., Deri, N.O., Kadri, A., (2022) Adsorption of Copper Ions Onto Rice Husk Activated Carbon Prepared Using Ultrasound Assistance: Optimization Based on Step-By-Step Single Variable Knockout Technique. Journal of Engineering Science and Technology 17, 2496–2511.
Raganati, F., Alfe, M., Gargiulo, V., Chirone, R., Ammendola, P., (2018) Isotherms and thermodynamics of CO2 adsorption on a novel carbon-magnetite composite sorbent. Chemical Engineering Research and Design 134, 540–552. https://doi.org/10.1016/j.cherd.2018.04.037
Rashidi, N.A., Bokhari, A., Yusup, S., (2021) Evaluation of kinetics and mechanism properties of CO2 adsorption onto the palm kernel shell activated carbon. Environmental Science and Pollution Research 28, 33967–33979. https://doi.org/10.1007/s11356-020-08823-z
Russel, Cl., (2023) Asia’s coal sector sees long, prosperous life [WWW Document]. URL https://www.nst.com.my/opinion/columnists/2023/09/961251/asias-coal-sector-sees-long-prosperous-life (accessed 12.6.23).
Sanna, A., Steel, L., Maroto-Valer, M.M., (2017) Carbon dioxide sequestration using NaHSO 4 and NaOH: A dissolution and carbonation optimisation study. Journal of Environmental Management 189, 84–97. https://doi.org/10.1016/j.jenvman.2016.12.029
Sen Gupta, S., Bhattacharyya, K.G., (2012) Adsorption of heavy metals on kaolinite and montmorillonite: A review. Physical Chemistry Chemical Physics 14, 6698–6723. https://doi.org/10.1039/c2cp40093f
Shikuku, V.O., Mishra, T., (2021) Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Applied Water Science 11, 1–9. https://doi.org/10.1007/s13201-021-01440-2
Song, X., Wang, L., Ma, X., Zeng, Y., (2017) Adsorption equilibrium and thermodynamics of CO 2 and CH 4 on carbon molecular sieves. Applied Surface Science 396, 870–878. https://doi.org/10.1016/j.apsusc.2016.11.050
Soni, P., Sur, A., Gaba, V.K., Sah, R.P., (2021) Review on improvement of adsorption refrigeration systems performance using composite adsorbent: current state of art. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 00, 1–25. https://doi.org/10.1080/15567036.2021.1927252
Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B., (2016) The Increase of the Micoporosity and CO2 Adsorption Capacity of the Commercial Activated Carbon CWZ-22 by KOH Treatment, in: Microporous and Mesoporous Materials. InTech, p. 15. https://doi.org/10.5772/63672
Sun, Y., Zhao, J., Wang, J., Tang, N., Zhao, R., Zhang, D., Guan, T., Li, K., (2017) Sulfur-Doped Millimeter-Sized Microporous Activated Carbon Spheres Derived from Sulfonated Poly(styrene-divinylbenzene) for CO2 Capture. Journal of Physical Chemistry C 121, 10000–10009. https://doi.org/10.1021/acs.jpcc.7b02195
Tiwari, D., Bhunia, H., Bajpai, P.K., (2018) Adsorption and thermodynamic studies of pure and binary CO2 and N2 gas components on nitrogen enriched nanostructured carbon adsorbents. Journal of Chemical Thermodynamics 125, 205–213. https://doi.org/10.1016/j.jct.2018.06.009
Tran, H.N., (2023) Applying Linear Forms of Pseudo-Second-Order Kinetic Model for Feasibly Identifying Errors in the Initial Periods of Time-Dependent Adsorption Datasets. Water (Switzerland) 15. https://doi.org/10.3390/w15061231
Vieira, K.R.M., Arce, G.L.A.F., Luna, C.M.R., Facio, V.O., Carvalho, J.A., Neto, T.G.S., Ávila, I., (2022a) Understanding the acid dissolution of Serpentinites (Tailings and waste rock) for use in indirect mineral carbonation. South African Journal of Chemical Engineering 40, 154–164. https://doi.org/10.1016/j.sajce.2022.02.005
Vieira, K.R.M., Arce, G.L.A.F., Luna, C.M.R., Facio, V.O., Carvalho, J.A., Neto, T.G.S., Ávila, I., (2022b) Understanding the acid dissolution of Serpentinites (Tailings and waste rock) for use in indirect mineral carbonation. South African Journal of Chemical Engineering 40, 154–164. https://doi.org/10.1016/j.sajce.2022.02.005
DOI: https://doi.org/10.23955/rkl.v19i2.41399
Article Metrics
Abstract view : 23 timesPDF - 18 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Fannka Dhedia, Mahidin Mahidin, Husni Husin, Hisbullah Hisbullah, Nasrullah Razali, Alvan Ade Reza, Abdul Hadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL REKAYASA KIMIA & LINGKUNGAN
Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA
PRINCIPAL CONTACT
Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.usk.ac.id, nasrular@usk.ac.id
SUPPORT CONTACT
Mirna Rahmah Lubis
E-mail: mirna@che.usk.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.usk.ac.id











