Properties of Recycled Polyethylene Terephthalate (rPET)/Stearic Acid/Green Mussel Shell (GMS) Composite
Abstract
The increasing accumulation of plastic waste, particularly polyethylene terephthalate (PET), presents significant environmental challenges. This study explores the incorporation of green mussel shell (GMS) as a bio-filler in recycled polyethylene terephthalate (rPET) composites to promote sustainability and circular economy practices. rPET/SA/GMS composites were fabricated using injection molding, with GMS compositions of 0%, 5%, 10%, and 15% and a fixed 1% stearic acid (SA) content as a coupling agent. The effects of GMS on thermal, mechanical, rheological, and morphology properties were analyzed using differential scanning calorimetry (DSC), universal testing machine (UTM), melt flow index (MFI) testing, and scanning electron microscopy (SEM). The results indicate that 10% GMS exhibited the highest melting temperature (249.5°C) due to enhanced interfacial interactions, despite a decrease in crystallinity. However, tensile strength decreased significantly at 5% GMS (8.52 MPa) due to weak interfacial bonding, whereas 10% GMS (12.91 MPa) showed slight improvement due to better SA-assisted dispersion. Rheological analysis revealed the highest melt flow rate (162.87 g/10 min) at 5% GMS, but higher GMS concentrations reduced flowability due to increased CaCO₃ content and filler agglomeration. Morphological analysis confirmed that GMS addition increased surface roughness, induced void formation, and disrupted stress transfer, weakening composite integrity. These findings highlight the potential of GMS as a functional bio-filler in rPET composites, emphasizing the need for optimized filler concentration and interfacial modifications to develop sustainable high-performance materials.
Keywords
Full Text:
PDFReferences
Alfatah, T., Mistar, E. M., Syabriyana, M., & Supardan, M. D. (2022). Advances in oil palm shell fibre reinforced thermoplastic and thermoset polymer composites. Alexandria Engineering Journal, 61(6), 4945–4962.
Babaei, M., Jalilian, M., & Shahbaz, K. (2024). Chemical recycling of Polyethylene terephthalate: A mini-review. Journal of Environmental Chemical Engineering, 112507.
Bakri, M. K., Jayamani, E., Soon, K., & Hamdan, S. (2015). Reinforced Oil Palm Fiber Epoxy Composites: An Investigation on Chemical Treatment of Fibers on Acoustical, Morphological, Mechanical and Spectral Properties. Materials Today: Proceedings, 2, 2747–2756. https://doi.org/10.1016/j.matpr.2015.07.266
Balogun, O. P., Adediran, A. A., Omotoyinbo, J. A., Alaneme, K. K., & Oladele, I. O. (2020). Evaluation of water diffusion mechanism on mechanical properties of polypropylene composites. International Journal of Polymer Science, 2020(1), 8865748.
Broda, J., Slusarczyk, C., Fabia, J., & Demsar, A. (2016). Formation and properties of polypropylene/stearic acid composite fibers. Textile Research Journal, 86(1), 64–71.
Crompton, T. R. (1993). Degree of Crystallinity and Melting Temperature. In T. R. Crompton (Ed.), Practical Polymer Analysis (pp. 630–647). Springer US. https://doi.org/10.1007/978-1-4615-2874-6_13
Deshmukh, G. S., Pathak, S. U., Peshwe, D. R., & Ekhe, J. D. (2010). Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites. Bulletin of Materials Science, 33(3), 277–284. https://doi.org/10.1007/s12034-010-0043-7
Feng, D., Caulfield, D. F., & Sanadi, A. R. (2001). Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polymer Composites, 22(4), 506–517. https://doi.org/https://doi.org/10.1002/pc.10555
Gurmu, D. N., Gebrelibanos, H. M., Tefera, C. A., & Sirahbizu, B. (2024). Experimental investigation the effect of bamboo micro filler on performance of bamboo-sisal-E-glass fiber-reinforced epoxy matrix hybrid composites. Heliyon, 10(22), e40176. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e40176
Hegde, R. R. (2009). Structure and properties of nanoclay reinforced polymer films, fibers and nonwovens. Doctoral Dissertations, 39.
Hernández, Y., Lozano, T., Morales-Cepeda, A. B., Navarro-Pardo, F., Ángeles, M. E., Morales-Zamudio, L., Melo-Banda, J. A., Sánchez-Valdes, S., Martínez-Colunga, G., & Rodríguez, F. (2019). Stearic acid as interface modifier and lubricant agent of the system: Polypropylene/calcium carbonate nanoparticles. Polymer Engineering and Science, 59(s2), E279–E285. https://doi.org/10.1002/pen.25053
Juliana, A. H., Lee, S. H., Ashaari, Z., M. Tahir, P., Lum, W. C., & Uyup, M. K. A. (2019). Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites (pp. 141–156). https://doi.org/10.1016/B978-0-08-102292-4.00008-4
Kim, K.-J., White, J., Shim, S., & Choe, S. (2004). Effects of stearic acid coated talc, CaCO3, and mixed Talc/CaCO3 particles on the rheological properties of polypropylene compounds. Journal of Applied Polymer Science, 93, 2105–2113. https://doi.org/10.1002/app.20686
Leow, V. J., Teh, P. L., Yeoh, C. K., Abdul Rahim, N. A., Wong, W. C., Voon, C. H., Mohamed Rasidi, M. S., & Lim, B. Y. (2023). The effect of coated calcium carbonate using stearic acid on the recovered carbon black masterbatch in low-density polyethylene composites. 23(1). https://doi.org/doi:10.1515/epoly-2023-0025
Lertwattanaruk, P., Makul, N., & Siripattarapravat, C. (2012). Utilization of ground waste seashells in cement mortars for masonry and plastering. Journal of Environmental Management, 111, 133–141.
Li, C., Liao, H., Gao, H., Duan, S., & Cheng, F. (2024). Unveiling the dual role and regulatory mechanism of stearic acid in enhancing interface compatibility in high-filled coal gangue-polyethylene composites. Surfaces and Interfaces, 48, 104336.
Ming, Y., Zhou, Z., Hao, T., & Nie, Y. (2022). Polymer Nanocomposites: Role of modified filler content and interfacial interaction on crystallization. European Polymer Journal, 162, 110894. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2021.110894
Mohd Nasir, N. H., Usman, F., Woen, E. L., Ansari, M. N. M., Supian, A. B. M., & Saloma. (2023). Microstructural and Thermal Behaviour of Composite Material from Recycled Polyethylene Terephthalate and Fly Ash. Recycling, 8(1). https://doi.org/10.3390/recycling8010011
Mrad, H., Alix, S., Migneault, S., Koubaa, A., & Perré, P. (2018). Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement, 115, 197–203.
Nguyen, D. M., Vu, T. N., Nguyen, T. M. L., Nguyen, T. D., Thuc, C. N. H., Bui, Q. B., Colin, J., & Perré, P. (2020). Synergistic influences of stearic acid coating and recycled PET microfibers on the enhanced properties of composite materials. Materials, 13(6). https://doi.org/10.3390/ma13061461
Nguyen, T. T., Nguyen, V. K., Pham, T. T. H., Pham, T. T., & Nguyen, T. D. (2021). Effects of Surface Modification with Stearic Acid on the Dispersion of Some Inorganic Fillers in PE Matrix. Journal of Composites Science, 5(10). https://doi.org/10.3390/jcs5100270
Osman, M. A., & Suter, U. W. (2002). Surface Treatment of Calcite with Fatty Acids: Structure and Properties of the Organic Monolayer. Chemistry of Materials, 14(10), 4408–4415. https://doi.org/10.1021/cm021222u
Patti, A., Lecocq, H., Acierno, D., & Cassagnau, P. (2021). The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. Journal of Industrial and Engineering Chemistry, 96. https://doi.org/10.1016/j.jiec.2021.01.024
Pham, H.-N. T., & Nguyen, V.-T. (2020). Effect of calcium carbonate on the mechanical properties of polyethylene terephthalate/polypropylene blends with styrene-ethylene/butylene-styrene. Journal of Mechanical Science and Technology, 34(10), 3925–3930. https://doi.org/10.1007/s12206-020-2201-1
Polychronopoulos, N. D., & Vlachopoulos, J. (2019). Polymer processing and rheology. Functional Polymers, 86, 1–47.
Ramlee, N. A., Jawaid, M., Zainudin, E. S., & Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4), 3466–3474.
Sainudin, M. S., Othman, N. H., Guntor, N. A. A., Khalid, N. H. A., & Mohd-Salleh, S. N. A. (2023). Experimental Evaluation on Physical and Mechanical Properties of Concrete Containing Green Mussel Shell (Perna viridis) Powder as an Admixture. International Journal of Sustainable Construction Engineering and Technology, 14(2), 153–167. https://doi.org/10.30880/ijscet.2023.14.02.016
Seif, S., & Challita, G. (2022). Thermal Degradation Kinetics of Four Different Recycling Phases of Polyethylene Terephthalate Bottles. Journal of Modern Polymer Chemistry and Materials. https://doi.org/10.53964/jmpcm.2022005
Singh, A. K., Bedi, R., & Kaith, B. S. (2021). Composite materials based on recycled polyethylene terephthalate and their properties–A comprehensive review. Composites Part B: Engineering, 219, 108928.
DOI: https://doi.org/10.23955/rkl.v20i1.45134
Article Metrics
Abstract view : 37 timesPDF - 22 times
Refbacks
Copyright (c) 2025 Desi Budi Ariani, Khadijah Sayyidatun Nisa, Fitria Ika Aryanti, Ghina Sabrina Hanifati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL REKAYASA KIMIA & LINGKUNGAN
Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA
PRINCIPAL CONTACT
Nasrul Arahman, Prof. Dr. S.T., M.T.
Phone: +62813-6092-7917
E-mail: rkl@che.usk.ac.id, nasrular@usk.ac.id
SUPPORT CONTACT
Mirna Rahmah Lubis
E-mail: mirna@che.usk.ac.id
Wahyu Rinaldi, ST, M.Sc.
E-mail: wahyu.rinaldi@che.usk.ac.id












