Isolation and characterization of polyhydroxyalkanoate (PHA) producing bacteria isolate from landfill land of Kampung Jawa Banda Aceh



The production of biodegradable plastic from microorganisms has great potential as a substitute for conventional plastic. This study aims to isolate bacterial strains capable of polyhydroxyalkanoates (PHAs) production from the Kampung Jawa landfill land (KJLL) and characterize biopolymers. The bacterial strains were able to produce PHA using a mineral salt medium (MSM) with glucose as a carbon source. The qualitative screening of PHA-producing bacteria was conducted by Sudan Black and Nile Red. Of the 64 bacteria strains, only 41 were able to accumulate PHA in Sudan Black and Nile Red. The results showed that one bacteria the Coccobacillus strain had the highest color intensity for further characterization of PHA. The characterization of PHA by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed a melting temperature (Tm) of 101.54°C. X-ray diffraction (XRD) analysis revealed a crystalline structure with an index crystallinity (ICr) value of 15.82% for PHA. The results of the analysis proved that PHA was produced by bacteria isolate. This study suggests that this is the first report of the bacteria from the Kampung Jawa landfill producing PHA with good characteristics and potential biotechnology applications. 


Biodegradable Plastic, Polyhydroxyalkanoate (PHA), Landfill Land.


Możejko-Ciesielska, J.; Kiewisz, R. 2016. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol. Res. 192 271–282. DOI: 10.1016/j.micres.2016.07.010.

Urtuvia, V.; Villegas, P.; González, M.; Seeger, M. 2014. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int. J. Biol. Macromol. 70 208–213. DOI: 10.1016/J.IJBIOMAC.2014.06.001.

Yustinah; Hidayat, N.; Alamsyah, R.; Roslan, A. M.; Hermansyah, H.; Gozan, M. 2019. Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001. Biocatal. Agric. Biotechnol. 18 101019. DOI: 10.1016/J.BCAB.2019.01.057.

Kamsiati, E.; Herawati, H.; Purwani, E. Y. 2017. The development potential of sago and cassava starch-based biodegradable plastic in Indonesia. J. Penelitian dan Pengembangan Pertanian 36 (2) 67-76. DOI: 10.21082/jp3.v36n2.2017.p67-76

Pujawati, P. S. A.; Nawfa, R. 2016. Study of PHA plastic production with influence use of minimal liquid media and glucose by Ralstonia pickettii. JSS ITS 5 (1) 2337-3520. DOI: 10.12962/j23373520.v5i1.15257.

Raza, Z. A.; Abid, S.; Banat, I. M. 2018. Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 126 45–56. DOI: 10.1016/j.ibiod.2017.10.001.

Rehm, B. H. A.; Steinbüchel, A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol 25 (1–3) 3–19. DOI: 10.1016/S0141-8130(99)00010-0.

Yeoh, B. G.; Chee, K. S.; Phang, S.; Isa, Z.; Idris, A.; Mohamed, M. 1993. Waste management in Malaysia: current status and prospects for bioremediation (Kuala Lumpur: Misnistry of Sciences, Technology and the Environment)

Odeniyi, O. A.; Adeola, O. J. 2017. Production and characterization of polyhydroxyalkanoic acid from Bacillus thuringiensis using different carbon substrates. Int. J. Biol. Macromol. 104 407–413. DOI: 10.1016/J.IJBIOMAC.2017.06.041.

Hidayat, M. I.; Adlim, M.; Maulana, I.; Suhartono, S.; Hayati, Z.; Bakar, N. H. H. A. 2022. Green synthesis of chitosan-stabilized silver-colloidal nanoparticles immobilized on white-silica-gel beads and the antibacterial activities in a simulated-air-filter. Arabian J. Chem. 15 (2) 103596. DOI: 10.1016/j.arabjc.2021.103596.

Tabatabaee, M. S.; Mazaheri Assadi, M. 2013. Vacuum distillation residue upgrading by an indigenous Bacillus cereus. J. Environ. Health Sci. Eng. 11 18. DOI: 10.1186/2052-336X-11-18.

Mohammed, S.; Panda, A. N.; Ray, L. 2019. An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. Int. J. Biol. Macromol. 134 1085–1096. DOI: 10.1016/j.ijbiomac.2019.05.155.

Evangeline, S.; Sridharan, T. B. 2019. Biosynthesis and statistical optimization of polyhydroxyalkanoate (PHA) produced by Bacillus cereus VIT-SSR1 and fabrication of biopolymer films for sustained drug release. Int. J. Biol. Macromol. 135 945–958. DOI: 10.1016/j.ijbiomac.2019.05.163.

El-malek, F. A.; Farag, A.; Omar, S.; Khairy, H. 2020. Polyhydroxyalkanoates (PHA) from Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 isolated from Mariout salt lakes. Int. J. Biol. Macromol. 161 1318–1328. DOI: 10.1016/j.ijbiomac.2020.07.258.

Shrivastav, A.; Mishra, S. K.; Pancha, I.; Jain, D.; Bhattacharya, S.; Patel, S.; Mishra, S. 2010. Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine-bacteria using Jatropha biodiesel byproduct as a substrate. World J. Microbiol. Biotechnol. 27 1531–1541. DOI: 10.1007/s11274-010-0605-2.

Maheshwari, N.; Kumar, M.; Thakur, I. S.; Srivastava, S. 2018. Production, process optimization and molecular characterization of polyhydroxyalkanoate (PHA) by CO (2) sequestering B. cereus SS105. Bioresour. Technol. 254 75–82. DOI: 10.1016/j.biortech.2018.01.002.

Ng, L.M.; Sudesh, K. 2016. Identification of a new polyhydroxyalkanoate (PHA) producer Aquitalea sp. USM4 (JCM 19919) and characterization of its PHA synthase. J. Biosci. Bioeng. 122 (5) 550–557. DOI: 10.1016/j.jbiosc.2016.03.024.

Cai, S.; Wu, Y.; Li, Y.; Yang, S.; Liu, Z.; Ma, Y.; Lv, J.; Shao, Y.; Jia, H.; Zhao, Y.; Cai, L. 2021. Production of polyhydroxyalkanoates in unsterilized hyper-saline medium by halophiles using waste silkworm excrement as carbon source. Mol. 26 (23) 7122. DOI: 10.3390/molecules26237122.

Libenson, L.; McIlroy, A. P. 1955. On the mechanism of the gram stain. J. Infect. Dis. 97 (1) 22–26. DOI: 10.1093/infdis/97.1.22.

Shugar, D.; Baranowska, J. 1954. Studies on the gram stain; the importance of proteins in the Gram reaction. Acta Microbiol. Pol. (1952) 3 (1) 11–20.

Tan, G. Y. A.; Chen, C. L.; Li, L.; Ge, L.; Wang, L.; Razaad, I. M. N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J. Y. 2014. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polym. 6 (3) 706–754. DOI: 10.3390/polym6030706.

Hertadi, R.; Kurnia, K.; Falahudin, W.; Puspasari, M. 2017. Poly-hydroxybutyrate (PHB) production by Halomonas elongata BK AG 18 indigenous from salty mud crater at central Java Indonesia. Malays. J. Microbiol. 13 (1) 26-32. DOI: 10.21161/mjm.88416.

Tufail, S.; Munir, S.; Jamil, N. 2017. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Braz. J. Microbiol. 48 (4) 629–636. DOI: 10.1016/j.bjm.2017.02.008.

Akdoğan, M.; Çelik, E. 2018. Purification and characterization of polyhydroxyalkanoate (PHA) from a Bacillus megaterium strain using various dehydration techniques. J. Chem. Technol. Biotechnol. 93 (8) 2292–2298. DOI: 10.1002/jctb.5572.

Chin, J. H. C.; Samian, M. R.; Normi, Y. M. 2022. Characterization of polyhydroxyalkanoate production capacity, composition and weight synthesized by Burkholderia cepacia JC-1 from various carbon sources. Heliyon. 8 (3) e09174. DOI: 10.1016/j.heliyon.2022.e09174.

Faccin, D. J. L.; Rech, R.; Secchi, A. R.; Cardozo, N. S. M.; Ayub, M. A. Z. 2013. Influence of oxygen transfer rate on the accumulation of poly(3-hydroxybutyrate) by Bacillus megaterium. Process Biochem. 48 (3) 420–425. DOI: 10.1016/j.procbio.2013.02.004.

Moorkoth, D.; Nampoothiri, K. M. 2016. Production and characterization of poly(3-hydroxy butyrate-co-3 hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate. Bioresour. Technol. 201 253–260. DOI: 10.1016/j.biortech.2015.11.046.

Rodríguez-Contreras, A.; Koller, M.; Miranda-de Sousa Dias, M.; Calafell-Monfort, M.; Braunegg, G.; Marqués-Calvo, M. S. 2013. High production of poly(3-hydroxybutyrate) from a wild Bacillus megaterium Bolivian strain. J. Appl. Microbiol. 114 (5) 1378–1387. DOI: 10.1111/jam.12151.

Aluru, R. R. 2020. Screening and Biochemical Characterization of PHB Producing Bacterium Isolated from Costal Region of Andhra Pradesh. Environ. Earth Sci. Res J. 7 (3) 116–120. DOI: 10.18280/eesrj.070304.

Rao, A.; Haque, S.; El-Enshasy, H. A.; Singh, V.; Mishra, B. N. (2019). RSM–GA based optimization of bacterial PHA production and In Silico modulation of citrate synthase for enhancing PHA production. Biomolecules 9 (12) 872. DOI: 10.3390/biom9120872.

Shamala, T. R.; Divyashree, M. S.; Davis, R.; Kumari, K. S. L.; Vijayendra, S. V. N.; Raj, B. 2009. Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian J. Microbiol. 49 (3) 251–258. DOI: 10.1007/s12088-009-0031-z.

Porras, M. A.; Cubitto, M. A.; Villar, M. A. 2014. Quantitative determination of intracellular PHA in Bacillus megaterium BBST4 strain using Mid FTIR Spectroscopy. XIV Latin American Symposium on Polymers (XIV SLAP/XII CIP). DOI: 10.13140/RG.2.1.3920.2407.

Sharma, S.; Gupta, A.; Kumar, A.; Kee, C. G.; Kamyab, H.; Saufi, S. M. 2018. An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol. Environ. Policy 20 2157–2167. DOI: 10.1007/s10098-018-1498-2.

Mohapatra, S.; Sarkar, B.; Samantaray, D. P.; Daware, A.; Maity, S.; Pattnaik, S.; Bhattacharjee, S. 2017. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ. Technol. 38 (24) 3201–3208. DOI: 10.1080/09593330.2017.1291759.

Sedlacek, P.; Slaninova, E.; Enev, V.; Koller, M.; Nebesarova, J.; Marova, I.; Hrubanova, K.; Krzyzanek, V.; Samek, O.; Obruca, S. 2019. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl. Microbiol. Biotechnol. 103 1905–1917. DOI: 10.1007/s00253-018-09584-z.

Hwang, K.; You, S.; Don, T.-M. 2006. Disruption kinetics of bacterial cells during purification of poly-β-hydroxyalkanoate using ultrasonication. J. Chin. Inst. Chem. Eng. 37 (3) 209-216. DOI: 10.6967/JCICE.200605.0209.

Braunegg, G.; Sonnleitner, B.; Lafferty, R. M. 1978. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6 29–37. DOI: 10.1007/BF00500854.

Rebocho, A. T.; Freitas, F.; Pereira, J. R.; Neves, L. A.; Alves, V. D.; Sevrin, C.; Grandfils, C.; Reis, M. A. 2019. Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl. Food Biotechnol. 6 (1) 71-82. DOI: 10.22037/afb.v6i1.21793.

Saranya, V.; Shenbagarathai, R. 2011. Production and characterization of pha from recombinant E. coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5 using molasses. Braz. J. Microbiol. 42 (3) 1109–1118. DOI: 10.1590/S1517-83822011000300032.

Full Text: PDF

DOI: 10.24815/jn.v23i1.29746


  • There are currently no refbacks.