The difference in leaves production, protein and calcium of Moringa oleifera under modification planting media, application of PGR and nitrogen

RINI SULISTIANI, MUKHTAR YUSUF, SYAIFUL AMRI SARAGIH

Abstract


Moringa has many ingredients of nutrients that are beneficial for food sources and nutrients that have not been widely cultivated. The nutritional content, benefits and high demand for Moringa abroad will open large opportunities for exporting Moringa flour. Foods full of nutrition will support the maintenance of good public health. For this reason, it is necessary to study and research cultivation techniques that produce high Moringa leaves and can be available sustainably. Production of Moringa leaves as a source of secondary metabolites can be increased by modifying the planting media and applying Plant Growth Regulator (PGR) and Nitrogen. The study used Split Split Plot Design with the main plot immersion by PGR, consisting of 3 types, namely: G1 (Fresh water), G2 (Coconut water), and G3 (GA3). The subplot was the treatment of planting media with two types: M₁ (soil: sand: manure = 1:1:2); M₂ (soil: sand: manure = 1:2:1). The sub subplots were N (urea) fertilizer, with four levels: N0 (0 g/plant); N1 (5 g/plant); N₂ (10 g/plant); and N₃ (15 g/plant). Each treatment combination goes over three times. The agronomic parameters observed were plant height, the number of leaves, fresh crop weight, and root volume, and the biochemical parameters observed were chlorophyll, protein, and calcium levels. The composition of the planting media caused significant differences in plant height at 4, 6, and 10 weeks after planting (WAP), the number of leaves at 4 WAP, and root length at 10 WAP. Growth Regulators significantly affected plant height at 4, 6, and 10 WAP, the number of leaves at 4 WAP, and root length at harvest. Nitrogen fertilization caused significant differences in plant height at 4, 6, and 10 WAP, volume, and root length at harvest (10 WAP). The combination of Planting media, PGR, and Nitrogen treatments caused significant differences in plant height at 4, 6, and 10 WAP and the number of leaves at 6 WAP. Laboratory analysis in this study showed high calcium and protein in Moringa leaves.


Keywords


antioxidants, bioactive compounds, calcium, fertilizer, growth

References


Vélez-Gavilán, J. 2017. Moringa oleifera (horse radish tree). Cabi. https://www.cabdirect.org/cabdirect/abstract/20203483184

Aminah, S.; Rambhan, T. and Yanis, M. 2015. Kandungan Nutrisi dan Sifat Fungsional Tanaman Kelor (Moringa oleifera)/ Nutritional Content and Functional Properties of Moringa Plants (Moringa oleifera). Balai Pengkajian Teknologi Pertanian Jakarta. 5 (2), 35–44. https://adoc.pub/kandungan-nutrisi-dan-sifat-fungsional-tanaman-kelor-moringa.html

Amzu, E. 2014. Kampung Konservasi Kelor: Upaya Mendukung Gerakan Nasional Sadar Gizi dan Mengatasi Malnutrisi di Indonesia/ Moringa Conservation Village: Efforts to Support the National Movement for Nutrition Awareness and Overcoming Malnutrition in Indonesia. Risalah Kebijakan Pertanian dan Lingkungan. 1 (2), 86–91. https://jurnal.ipb.ac.id/index.php/jkebijakan/article/download/10298/8003/0

Peñalver, R.; Martínez‐zamora, L.; Lorenzo, J.M.; Ros, G. and Nieto, G. 2022. Nutritional and Antioxidant Properties of Moringa oleifera Leaves in Functional Foods. 11 (8) 1107. https://doi.org/10.3390/foods11081107.

Bonal Luiz, R.; Odio, R. and Carrión, M. 2012. Moringa oleifera: una opción saludable para el bienestar. Medisan. 16 (10) 1596–1599.

Sulistiani, R.; Saragih, S.A.; Munar, A. and Pohan, B.B.P. 2023. Peningkatan Produksi Daun dan Kadar Protein Kelor (Moringa oleifera) dengan Aplikasi Pupuk Organik pada Lahan Spesifik Lokasi/ The Increasing Leaf Production and Protein Levels of Moringa (Moringa oleifera) by applying Organic Fertilizer on Location-Specific Land . Agrovita Jurnal Ilmu Pertannian 8 (1) 39. DOI:10.35329/agrovital.v8i1.3681

Montgomery, D.C. 2019. Design and Analysis of Experiments, 10th Edition. (Wiley)

Setiawan, A. 2023. Rancangan Petak-Petak Terbagi/ Split-split Plot Design. https://www.smartstat.info/materi/rancangan-percobaan/rancangan-petak-petak-terbagi-split-split-plot.html

Mardiyah, S. 2018. Pengaruh Lama Pemanasan terhadap Kadar Alkohol pada Nira Siwalan (Borassus flabellifer)/ ffect of Heating Time on Alcohol Levels in Siwalan Nira (Borassus flabellifer). J. Muhammadiyah Med. Lab. Technol. 1 (1) 9–15. https://doi.org/10.30651/jmlt.v1i1.977

Purwanto, A.D. 2014. Macam macam pupuk organik dan anorganik pengertian serta unsur mikro/ Various of organic and inorganic fertilizers understanding and microelements. https://www.slideshare.net/67irwan/macam-macam-pupuk-organik-dan-anorganik-pengertian-serta-unsur-mikro

Syamsuddin, S.; Hafsah, S.; Maulida, V. and Marliah, A. 2022. The effect of plant growth promoting Rhizobacteria treatment on germination and seedlings growth of chilli. J. Nat. 22 (2) 85–93. DOI: 10.24815/jn.v22i2.24458

Punuindoong, S.; Sinolungan, M.T.M. and Rondonuwu, J.J. 2021. Kajian Nitrogen, Fosfor, Kalium dan C-Organik pada Tanah Berpasir Pertanaman Kelapa Desa Ranoketang Atas/ Study of Nitrogen, Phosphorus, Kalium, and C-Organic In Sandy Soils of coconut Plantation of Ranoketang Atas Village. Soil Environ. J. 21 (3) 6–11. DOI: https://doi.org/10.35791/se.21.3.2021.36670

Fefiani, Y. and Barus, W.A. 2014. Respon Pertumbuhan dan Produksi tanaman mentimun (Cucumis sativus L.) Akibat pemberian pupuk kandang sapi dan pupuk organik padat supernasa/ growth response and production of cucumber plants (Cucumis sativus L.) due to cow manure and supernasa solid organic fertilizer. Agrium Jurnal Ilmu Pertanian. 2014. 19 (1), 21-30. DOI: https://doi.org/10.30596/agrium.v19i1.328

Purba, T.; Situmeang, R.; Rohman, H.; Mahyati; Arsi; Firgianto, R.; Junaedi, A.; Saadah, T.; Herawati, J. and Suhastyo, A. 2021. Pupuk dan Teknologi Pemupukan/ Fertilizer and Fertilization Technology (Yayasan Kita Menulis).

Nurida, N.L. and Rachman, A. 2020. Amelioration of Acid Upland to Increase Soil Productivity and Soybean Yield. Agrivita J. Agric. Sci. 42 (2) 350–9. DOI: http://doi.org/10.17503/agrivita.v42i2.1790

Handayanto, E.; Muddarisna, N. and Fiqri, A. 2017. Pengelolaan Kesuburan Tanah/ Soil Fertility Management (Universitas Brawijaya press)

Ogunyale, O.G.; Fawibe, O.O.; Ajiboye, A.A and Agboola, D.A. 2014. A Review of Plant Growth Substances: Their Forms, Structures, Synthesis and Functions. J. Adv. Lab. Res. Biol. 5 (4) 152–68. https://www.neliti.com/publications/279098/

Tarigan, D.M.; Barus, W.A.; Nasution, F.Y.H. and Lestami, A. 2022. Utilization of shallot extract and administration of indole acetic acid to Chrysanthemum sp in vitro culture. J. Nat. 22 (2) 102–7. https://doi.org/10.24815/jn.v22i2.25778

Kamillia, G.; Sulichantini, E.D. and Pujowati, P. 2019. Pengaruh pemberian berbagai bahan zat pengatur tumbuh alami pada pertumbuhan bibit cempedak (Artocarpus champeden Lour.)/ The Effect of giving various natural growth regulators on the growth of cempedak (Artocarpus champeden Lour.) Seedlings. J. Agroekoteknologi Tropika Lembab 2 (1) 20–3. http://dx.doi.org/10.35941/jatl.2.1.2019.2528.20-23

Darmadi, S. 2014. Kajian Pengaruh Auksin terhadap Perkecambahan Benih dan Pertumbuhan Tanaman/ Study of the Effect of Auxin on Seed Germination and Plant Growth (Balai Besar Perbenihan dan Proteksi Tanaman Perkebunan Surabaya)

Yong, J.W.H.; Ge, L.; Ng, Y.F. and Tan, S.N. 2009. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules.14 (12) 5144–64. https://doi.org/10.3390/molecules14125144

Karunarathna, B. and Kumuthini, D. 2016. Effect of coconut water on the cutting establishment of Ixora (Ixora coccinea L.). Int. J. Adv. Res. Rev. 1 (11),27–33. https://www.ijarr.in/Admin/pdf/154.pdf

Muhammad, K.; Gul, Z.; Jamal, Z.; Ahmed, M. Khan, A.R. and Khan, Z.U. 2015. Effect of coconut water from different fruit maturity stages, as natural substitute for synthetic PGR in in vitro potato micropropagation. Int. J. Biosci.. 6 (2) 84–92. http://dx.doi.org/10.12692/ijb/6.2.84-92

Irvan, A. and Adriana, A. 2017. Pengaruh Zat Pengatur Tumbuh (ZPT) Daminozid dan Giberelin terhadap Pertumbuhan dan Pembungaan Padi Pandanwangi/ Effect of Plant Growth Regulator (PGR) Daminozid and Gibberellins on the Growth and Flowering of Pandanwangi Rice. Agroscience 7 (2) 281–9. https://doi.org/10.35194/agsci.v7i2.153

Saragih, D.; Hamim, H. and Nurmauli, N. 2013. Pengaruh Dosis dan Waktu Aplikasi Pupuk Urea dalam Meningkatkan Pertumbuhan dan Hasil Jagung (Zea mays, L.) Pioneer 27/ Effect of Dosage and Time of Application of Urea Fertilizer in Increasing Growth and Yield of Corn (Zea mays, L.) Pioneer 27. J. Agrotek Tropika. 1 (1), 50–4. http://dx.doi.org/10.23960/jat.v1i1.1890

Thi, L.H.N.; Thi, L.D.; Insixiengmai, O. and Nguyen-Sy, T. 2022. Modelling Nitrogen Uptake in Eight Common Leafy Vegetables in Red River Delta, Vietnam. Agrivita J. Agric. Sci. 44 (2), 266–75. http://doi.org/10.17503/agrivita.v44i2.3009

Chen, G.; Wang. L.; Fabrice, M.R.; Tian, Y.; Qi, K.; Chen, Q.; Cao, P.; Wang, P.; Zhang, S.; Wu, J. and Tao, S. 2018. Physiological and nutritional responses of pear seedlings to nitrate concentrations. Front. Plant Sci. 9. https://doi.org/10.3389/fpls.2018.01679

Bai, L.; Deng, H.; Zhang, X.; Yu, X. and Li, Y. 2016. Gibberellin Is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures. Plos One 11 (5). https://doi.org/10.1371/journal.pone.0156188

Wei, S.; Wang, X.; Shi, D.; Li, Y.; Zhang, J.; Liu, P.Zhao, B. and Dong, S. 2016. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. Plant Physiol. Biochem. 105 118–28. https://doi.org/10.1016/j.plaphy.2016.04.007

Liu, L.; Xiao, W.; Li, L.; Li, D.M.; Gao, D.S.; Zhu C.Y. and Fu, X.L. 2017. Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. Plant Physiol Biochem. 115 200–11. https://doi.org/10.1016/j.plaphy.2017.03.015

Chen, Q.; Ding, N.; Peng, L.; Ge, .SF. and Jiang, Y.M. 2017. Effects of different nitrogen application rates on 15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple. J. Appl. Ecol. 28 (7) 2247–2253. https://doi.org/10.13287/j.1001-9332.201707.001

Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Cristoe, P.; Fangmeier, A. and Zhang, F. 2013. Enhanced nitrogen deposition over China. Nature 494 459–62. https://www.nature.com/articles/nature11917

Zhu, L.X. and Zhang, W.J. 2017. Effects of controlled-release urea combined with conventional urea on nitrogen uptake, root yield, and quality of Platycodon grandiflorum. J. Plant Nutr. 40 (5) 662–672. https://doi.org/10.1080/01904167.2016.1249799

Hariyono, D.; Ali, F.Y. and Nugroho, A. 2021. Increasing the Growth and Development of Chili-Pepper Under Three Different Shading Condition in Response to Biofertilizers Application. Agrivita J. Agric. Sci. 43 (1) 198–208. http://doi.org/10.17503/agrivita.v43i1.2833


Full Text: PDF

DOI: 10.24815/jn.v24i1.32403

Refbacks

  • There are currently no refbacks.