Identification ratio of Si/Ti and Ca/Ti content by X-Ray Fluorescence in tsunami soil samples

KURNIA LAHNA, RARA MITAPHONNA, MULIADI RAMLI, FALIQUL ISBAH, ELIN YUSIBANI, FAUZI FAUZI, NAZLI ISMAIL, NASRULLAH IDRS

Abstract


Earthquakes and tsunamis natural disasters have repeatedly occurred on the coast of Aceh province, which lies between the confluence of two plates. The tsunami deposits in this area can provide important information regarding the reconstruction of marine attacks by past earthquakes and tsunamis. In general, tsunami deposits can be identified based on their geological, sedimentological, paleontological, and geochemical characteristics. In our research work, spectrometry X-ray fluorescence (XRF) has been utilized to investigate the geochemical signatures of tsunami-affected soil samples in Aceh province at three tsunami-impacted areas, namely Aceh Besar regency, Banda Aceh City, and Aceh Barat regency. The sampling point is located about a kilometer from the coastal line. Our findings indicate that tsunami-affected soils in Aceh Province after 10 years struck by tsunami contain terrestrial markers such as Fe and Ti, carbonate markers (Mg, Ca), and heavy metals elements (Cr, Ni, Cu, Zn, and Sr). On the other hand, in our study, the concentration ratios of several elements such as Si/Ti and Ca/Ti seem most suitable as a chemical signature for differentiating environmental conditions such as the 2004 Indian Ocean tsunami event. It could be noticed that geochemical analysis by XRF can be applied to characterize the tsunami-affected soils in several coastal areas of Aceh province.


Keywords


Aceh-tsunami, soils, chemical signatures, XRF technique

References


Stein, S.; Okal, E. A. 2005 Speed and size of the Sumatra Earthquake. Nature 434:581-582,

https://doi.org/10.1038/434581a

Patrice, A.; Kohl, A. P.; O'Rourke, D. L.; Schmidman, W. A.; Dopkin; Marvin, L. B. 2005 The Sumatra-Andaman Earthquake and Tsunami of 2004. The Hazards, Events, and Damage Prehospital and Disaster Medicine, 20(6) pp. 355 – 363.

DOI: https://doi.org/10.1017/S1049023X00002880

Bam, E. K. P.; Akumah, A. M.; Bansah, S. 2020 Geochemical and chemometric analysis of soils from a data scarce river catchment in west Africa. Envir. Res. Com. 2(3). https://doi.org/10.1088/2515-7620/ab59c6

Box, S. E.; Bookstrom, A. A.; Ikramuddin, M; Lindsay, J. 2001 Geochemical Analyses of Soils and Sediments, Coeur D’alene Drainage Basin, Idaho: Sampling, Analytical Methods, and Results, U.S. Geological Survey, Open-File Report 01-139. https://doi.org/10.3133/ofr2001139

Salomão, G. N.; Farias, D. de L.; Sahoo, P. K.; Dall’agnol, R.; Sarkar, D. 2021 Integrated geochemical assessment of soils and stream sediments to evaluate source-sink relationships and background variations in the parauapebas river basin, eastern amazon. Soil Systems, 5(1). https://doi.org/10.3390/SOILSYSTEMS5010021

Chagué-Goff, C.; Chan, J. C. H.; Goff, J.; Gadd, P. 2016 Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands. Island Arc 25, 333–349. https://doi.org/10.1111/iar.12153

Idris, N.; Gondal, M. A.; Lahna, K.; Ramli, M.; Sari, A. M.; AlDakheel, R. K.; Mitaphonna, R.; Dastageer, M. A.; Kurihara, K.; Kurniawan, K. H.; Almesserie, M. A. 2022. Geochemistry study of soil affected catastrophically by tsunami disaster triggered by 2004 Indian Ocean earthquake using a fourth harmonics (λ = 266 nm) Nd:YAG laser induced breakdown spectroscopy. Arabian J. Chem. 15(7),103847. https://doi.org/10.1016/j.arabjc.2022.103847

Shinozaki, T. 2021 Geochemical approaches in tsunami research : current knowledge and challenges. Geoscience Let. 8:6. https://doi.org/10.1186/s40562-021-00177-9

Chagué-Goff, C.; Goff, J.; Wong, H. K. Y.; Cisternas, M. 2014 Insights from geochemistry and diatoms to characterise a tsunami’s deposit and maximum inundation limit. Mar. Geol., 359, 22–34. https://doi.org/10.1016/j.margeo.2014.11.009

Richmond, B. M.; Buckley, M.; Etienne, S.; Chagué-Goff, C.; Clark, K.; Goff, J.; Dominey H. D.; Strotz, L. 2011 Deposits, flow characteristics, and landscape change resulting from the September 2009 South Pacific tsunami in the Samoan islands. Earth-Sci. Rev. 107 38-51. https://doi.org/10.1016/j.earscirev.2011.03.008

Szczuciński, W.; Niedzielski, P.; Rachlewicz, G.; Sobczyński, T.; Zioła, A.; Kowalski, A.; Lorenc, S.; Siepak, J. 2005 Contamination of tsunami sediments in a coastal zone inundated by the 26 December 2004 tsunami in Thailand. Envir. Geol. 49(2), 321–331. https://doi.org/10.1007/s00254-005-0094-z

Gelfenbaum, G.; Jaffe, B. 2003 Erosion and Sedimentation from the 17 July, 1998 Papua New Guinea Tsunami. Pure appl. geophys. 160, 1969–1999. https://doi.org/10.1007/s00024-003-2416-y

Chaerun, S. K.; Whitman, W. B; Wirth, S. J.; Ellerbrock, R. H. 2009 Chemical and Mineralogical Characterization of Agricultural Soils Inundated by the December 26, 2004 Tsunami After Intrinsic Bioremediation In Banda Aceh, Sumatra Island, Indonesia, The 2009 National Meeting of The American Society of Mining and Reclamation, Billings, MT, Revitalizing the Environment: Proven Solutions and Innovative Approaches May 30 – June 5, 2009. R.I. Barnhisel (Ed.) Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502. https://doi.org/10.21000/JASMR09010210

Mitaphonna, R.; Ramli, M.; Ismail, N.; Kurihara, K.; Subianto, M.; Gondal, M. A.; Idris, N. 2021 Preliminary evaluation of chemical component in the 2004 Indian ocean giant tsunami impacted soil using a Co2 Laser Induced Breakdown Spectroscopy (LIBS). J. Phys. Conf. Ser. 1816(1). https://doi.org/10.1088/1742-6596/1816/1/012035

Idris, N.; Ramli, M.; Hedwig, R.; Lie, Z. S.; Kurniawan, K. H. 2016 Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS). AIP Conf. Proceed. 1719. https://doi.org/10.1063/1.4943746

Idris, N.; Ramli, M.; Khumaeni, A.; Kurihara, K. 2018 Detection of salts in soil using transversely excited atmospheric (TEA) carbon dioxide (CO2) laser-induced breakdown spectroscopy (LIBS) by the aid of a metal mesh. J. Phys. Conf. Ser. 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012055

Daly, P.; Halim, A.; Hundlani, D.; Ho, E. 2017 Ocean & Coastal Management Rehabilitating coastal agriculture and aquaculture after inundation events : Spatial analysis of livelihood recovery in post-tsunami Aceh, Indonesia. Ocean and Coastal Management, 142, 218–232. https://doi.org/10.1016/j.ocecoaman.2017.03.027

Marohn, C. A.; Distel, G.; Dercon, R.; Tomlinson, M. V.; Noordwijk, G. 2012 Cadisch Impacts of soil and groundwater salinization on tree crop performance in post-tsunami Aceh Barat, Indonesia Nat. Hazard Earth Sys., 12 (9) 2879-2891. https://doi.org/10.5194/nhess-12-2879-2012

Mcleod, M. K.; Slavich, P. G.; Irhas, Y.; Moore, N.; Rachman, A.; Ali, N.; Iskandar, T.; Hunt, C.; Caniago, C. 2010 Soil salinity in Aceh after the December 2004 Indian Ocean tsunami. Agricultural Water Manag., 97(5), 605–613. https://doi.org/10.1016/j.agwat.2009.10.014

Tsuji, Y.; Tanioka, Y.; Matsutomi, H.; Nishimura, Y.; Kamataki, T.; Murakami, Y.; Sakakiyama, T.; Moore, A.; Gelfenbaum, G.; Nugroho, S.; Waluyo, B.; Sukanta, I.; Triyono, R.; Namegaya, Y. 2006 Damage and Height Distribution of Sumatra Earthquake-Tsunami of December 26 , 2004 , in Banda Aceh City and its Environs. J. Disaster Res., 1 (1), 103-115.

https://doi.org/10.20965/JDR.2006.P0103

Chagué-Goff, C.; Schneider, J.; Goff, J. R.; Dominey-howes, D.; Strotz, L. 2011 Earth-Science Reviews Expanding the proxy toolkit to help identify past events — Lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth Sci. Rev. 107, 107–122. https://doi.org/10.1016/j.earscirev.2011.03.007

Chague-Goff, C.; Wong, H. K. Y.; Sugawara, D.; Goff, J.; Nishimura, Y.; Beer, J.; Szczucinski, W.; Goto, K. 2014 Impact of Tsunami Inundation on Soil Salinisation: Up to One Year After the 2011 Tohoku-Oki Tsunami. In: Kontar, Y., Santiago-Fandiño, V., Takahashi, T. (eds) Tsunami Events and Lessons Learned. Adv. in Nat. and Technol. Hazards Res. 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7269-4_10

Chagué-Goff, C.; Cope, J.; Goff, J.; McFadgen, B.; Mooney, S.; Kilroy, C.; Zawadzki, A.; Wong, H.; Jacobsen, G. 2012 Return of the Sea Monster – A Tale from D'Urville Island, New Zealand. Proceedings of the Third Joint IGCP588/INQUA 1001 Meeting “Preparing for Coastal Change”. Kiel, Germany, 4–10 September 2012. p. 47. https://apo.ansto.gov.au/dspace/handle/10238/9493

Chagué-Goff, C.; Andrew, A.; Szczucinski, W.; Goff, J.; Nishimura, Y. 2012 Geochemical signatures up to the maximum inundation of the 2011 Tohoku-oki tsunami — Implications for the 869 AD Jogan and other palaeotsunamis. Sediment. Geol. 282 65–77. https://doi.org/10.1016/j.sedgeo.2012.05.021

Dura, T.; Hemphill-haley, E.; Sawai, Y.; Horton, B. P. 2016 Earth-Science Reviews The application of diatoms to reconstruct the history of subduction zone earthquakes and tsunamis. Earth Sci. Rev. 152 181–197. https://doi.org/10.1016/j.earscirev.2015.11.017

Watanabe, T.; Tsuchiya, N.; Yamasaki, S. I.; Sawai, Y.; Hosoda, N.; Nara, F. W.; Nakamura, T.; Komai, T. 2020 A geochemical approach for identifying marine incursions: Implications for tsunami geology on the Pacific coast of northeast Japan. Appl. Geochem. 118 [104644]. https://doi.org/10.1016/j.apgeochem.2020.104644

Utama, F. G. 2016 Pemanfaatan Citra Satelit sebagai Alat Deteksi dan Analisis Dampak Tsunami: Studi Dampak di Indonesia. Oseana 41 (1) 33–38). http://oseanografi.lipi.go.id/dokumen/os_xli_1_2016-4.pdf

Rabinovich, A. B.; Titov, V. V.; Moore, C. W.; Eble, M. C. 2017 The 2004 Sumatra Tsunami in the Southeastern Pacific Ocean: New Global Insight From Observations and Modeling. J. Geophys. Res. Oceans, 122 7992–8019. https://doi.org/10.1038/175238c0

Cuven, S.; Paris, R.; Falvard, S.; Miot-noirault, E.; Benbakkar, M.; Schneider, J.; Billy, I. 2013 High-resolution analysis of a tsunami deposit : Case-study from the 1755 Lisbon tsunami in southwestern Spain. Mar. Geol. 337 98–111.

https://doi.org/10.1016/j.margeo.2013.02.002

Hadler, H.; Baika, K.; Pakkanen, J.; Evangelistis, D.; Emde, K.; Fischer, P.; Ntageretzis, K.; Röbke, B.; Willershäuser, T.; Vött, A. 2015 Palaeotsunami impact on the ancient harbour site Kyllini (western Peloponnese, Greece) based on a geomorphological multi-proxy approach. Zeitschrift Für Geomorphologie, Supplementary 59(4), 7–41. https://doi.org/10.1127/zfg_suppl/2014/S-00187

Vött, A.; Lang, F.; Brückner, H.; Gaki-Papanastassiou, K.; Maroukian, H.; Papanastassiou, D.; Giannikos, A.; Hadler, H.; Handl, M.; Ntageretzis, K.; Willershäuser, T.; Zander, A. 2011 Sedimentological and geoarchaeological evidence of multiple tsunamigenic imprint on the Bay of Palairos-Pogonia (Akarnania, NW Greece). Quaternary International, 242(1), 213–239. https://doi.org/10.1016/j.quaint.2010.11.002

May, S. M.; Vött, A.; Brückner, H.; Smedile, A. 2012 The Gyra washover fan in the Lefkada Lagoon, NW Greece - Possible evidence of the 365 AD Crete earthquake and tsunami. Earth, Planets and Space, 64(10), 859–874. https://doi.org/10.5047/eps.2012.03.007

Donnelly, J.; Goff, J.; Chagué-Goff, C. 2017 A record of local storms and trans-Pacific tsunamis, eastern Banks Peninsula, New Zealand. Holocene 27(4), 496–508. https://doi.org/10.1177/0959683616670222

Koster, B.; Vött, A.; Mathes-Schmidt, M.; Reicherter, K. 2015 Geoscientific investigations in search of tsunami deposits in the environs of the Agoulinitsa peatland, Kaiafas Lagoon and Kakovatos (Gulf of Kyparissia, western Peloponnese, Greece). Zeitschrift Fur Geomorphologie, 59(December), 125–156. https://doi.org/10.1127/zfg-suppl/2014/S-00192


Full Text: PDF

DOI: 10.24815/jn.v24i1.35429

Refbacks

  • There are currently no refbacks.