Generating Evacuation Route for Tsunami Evacuation Based on Megathrust Scenario Hazard Model in Palabuhanratu Village, Sukabumi, West Java
Abstract
Palabuhanratu Village is one of the villages in Sukabumi, West Java, that is susceptible to earthquake and tsunami risks. This research intends to revise the tsunami hazard map, undertake a spatial analysis of the distribution of evacuation sites, and identify optimal tsunami evacuation routes. The tsunami hazard map was updated using tsunami modeling with COMCOT based on the worst-case scenario of potential magnitude moment 8.8 for the Megathrust segment in the south of West Java from PuSGeN. This modeling was used to predict the worst probable tsunami impact. On the basis of field survey data regarding the location of evacuation sites, evaluation of the distribution of evacuation sites was conducted. In addition, service area analysis is utilized to assess the service area of the present evacuation site in relation to each hamlet in Palabuhanratu village. Approximately 57.33 percent of the town could be affected by a tsunami, according to the findings of this study. The greatest tsunami height along the coast is expected to be between 18 and 22 meters, and the arrival time is 22 minutes. From a total of 35 hamlets, we determined that two hamlets in the Palabuhanratu village area were not harmed by the tsunami. Because not everyone can reach the evacuation location in time, the findings of this study show the need for an additional vertical evacuation site.
Keywords
Full Text:
PDFReferences
Badan Meteorologi Klimatologi dan Geofisika (BMKG). (2018). Katalog Gempa Bumi Signifikan dan Merusak Tahun 1821–2018, Pusat Gempa dan Tsunami BMKG, Retrieved from https://www.bmkg.go.id/gempabumi/katalog-gempabumi-signifikan.bmkg
Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443–446. https://doi.org/10.1038/22739
Fujii, Y., & Satake, K. (2006). Source of the July 2006 West Java tsunami estimated from tide gauge records. Geophysical Research Letters, 33(24), 1–5. https://doi.org/10.1029/2006GL028049
Habibi, M. H., & Khakim, N. (2016). Aplikasi Penginderaan Jauh Dan Sistem Informasi Geografis Untuk Perencanaan Jalur Evakuasi Tsunami di Kecamatan Wateskabupatenkulonprogo. Jurnal Bumi Indonesia, 1–10.
Hanks, T. C., & Kanamori, H. (1979). A Moment Magnitude Scale. Journal of Geophysical Research, 84(9), 2348–2350.
Haryadi, B., Rahman, A., & Mildawani, I. (2022). Pendekatan Perancangan Bangunan Hotel Tanggap Bencana (Disaster Building) Di Area Pesisir Pantai Pelabuhan Ratu …. UG Journal, 16, 61–89. https://www.ejournal.gunadarma.ac.id/index.php/ugjournal/article/download/7345/2652
Haryanto, I. (2006). Struktur Geologi Paleogen Dan Neogen. Bulletin of Scientific Contribution, 4(1), 88–95.
Haryanto, I., Hutabarat, J., Sudradjat, A., Ilmi, N. N., & Sunardi, D. E. (2017). Tektonik Sesar Cimandiri, Provinsi Jawa Barat. Bulletin of Scientific Contribution, 15(Gambar 2), 255–274.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723
Ilayaraja, K. (2013). Road Network Analysis in Neyveli Township, Cuddalore District by using Quantum GIS. Indian Journal of Computer Science and Engineering (IJCSE), 4(1), 56–61.
Imamura, F., Muhari, A., Mas, E., Pradono, M. H., Post, J., & Sugimoto, M. (2012). Tsunami disaster mitigation by integrating comprehensive countermeasures in Padang city, Indonesia. Journal of Disaster Research, 7(1), 48–64. https://doi.org/10.20965/jdr.2012.p0048
Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112–136. https://doi.org/10.1177/8755293020951206
Juliandri, M. R., Radjawane, I. M., & Tarya, A. (2020). Modeling the distribution of floating marine debris movement in tourism area in pelabuhan Ratu bay, West Java. AACL Bioflux, 13(5), 3105–3116.
Marfai, M. A., Khakim, N., Fatchurohman, H., & Salma, A. D. (2021). Planning tsunami vertical evacuation routes using high-resolution UAV digital elevation model: case study in Drini Coastal Area, Java, Indonesia. Arabian Journal of Geosciences, 14(19). https://doi.org/10.1007/s12517-021-08357-9
Nainitania, R., & Darmawan, D. (2020). Analisis Zona Genangan Tsunami Akibat Gempa Bumi Megathrust Di Selatan Pulau Jawa Analysis of Tsunami Inundation Zone Due To Megathrust Earthquake in. 20–26.
Oktariadi, O. (2009). Penentuan Peringkat Bahaya Tsunami dengan Metode Analytical Hierarchy Process (Studi kasus: Wilayah Pesisir Kabupaten Sukabumi). Indonesian Journal on Geoscience, 4(2), 103–116. https://doi.org/10.17014/ijog.vol4no2.20093
Post, J., Wegscheider, S., Mück, M., Zosseder, K., Kiefl, R., Steinmetz, T., & Strunz, G. (2009). Assessment of human immediate response capability related to tsunami threats in Indonesia at a sub-national scale. Natural Hazards and Earth System Science, 9(4), 1075–1086. https://doi.org/10.5194/nhess-9-1075-2009
Purbani, D., Ramdhan, M., Salim, H. L., Daulat, A., Heriati, A., Ontowirjo, B., & Ardiansyah, A. (2022). Determining The Capacity of Temporary Evacuation Shelter in Carita and Labuan District Pandeglang Regency. Jurnal Segara, 18(1), 13. https://doi.org/10.15578/segara.v18i1.10544
Pusat Studi Gempa Nasional. (2017). Peta Sumber dan Bahaya Gempabumi Tahun 2017. In Pusat Litbang Perumahan dan Permukiman.
Rumondor, A. G., Sentinuwo, S. R., Sambul, A. M., Elektro, T., Sam, U., & Manado, J. K. B. (2019). Perancangan Jalur Terpendek Evakuasi Bencana di Kawasan Boulevard Manado Menggunakan Algoritma Dijkstra. 14(2), 261–268.
S L Bilek, & Lay, T. (2002). Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophysical Research Letters, 29(14), 1–4. https://doi.org/10.1029/2002GL015215
Sianturi, R. S., Koswara, A. Y., & Elysiyah, I. (2021). Recommending assembly points, evacuation routes, and standard operating procedures for potential flooding due to reservoir dam failures: A case study of Gondang Reservoir, Lamongan, East Java. IOP Conference Series: Earth and Environmental Science, 778(1). https://doi.org/10.1088/1755-1315/778/1/012004
Sudarsana, I. W., Mendi, S., Abdullah, Hendra, A., & Sahari, A. (2013). Model Matematika Untuk Sistem Evakuasi Tsunami Kota Palu (Set-Kp) Berbasis Jalur Terpendek dan Waktu Evakuasi Minimum. Jurnal of Natural Science, 2(3).
Supendi, P., Muhari, A., & Rawlinson, N. (2020). Potential megathrust earthquakes and tsunamis off the southern coast of West Java , Indonesia. Research Square, 1–9.
Syamsidik, Al’Ala, M., Fritz, H. M., Fahmi, M., & Mudi Hafli, T. (2019). Numerical simulations of the 2004 Indian Ocean tsunami deposits’ thicknesses and emplacements. Natural Hazards and Earth System Sciences, 19(6), 1265–1280. https://doi.org/10.5194/nhess-19-1265-2019
Takabatake, T., Shibayama, T., Esteban, M., Ishii, H., & Hamano, G. (2017). Simulated tsunami evacuation behavior of local residents and visitors in Kamakura, Japan. International Journal of Disaster Risk Reduction, 23, 1–14. https://doi.org/10.1016/j.ijdrr.2017.04.003
Tanioka, Y., Miranda, G. J. A., Gusman, A. R., & Fujii, Y. (2017). Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America. Pure and Applied Geophysics, 174(8), 3237–3248. https://doi.org/10.1007/s00024-017-1630-y
Triantafyllou, I., Novikova, T., Charalampakis, M., Fokaefs, A., & Papadopoulos, G. A. (2019). Quantitative Tsunami Risk Assessment in Terms of Building Replacement Cost Based on Tsunami Modelling and GIS Methods: The Case of Crete Isl., Hellenic Arc. Pure and Applied Geophysics, 176(7), 3207–3225. https://doi.org/10.1007/s00024-018-1984-9
Usman, F., Murakami, K., Dwi Wicaksono, A., & Setiawan, E. (2017). Application of Agent-Based Model Simulation for Tsunami Evacuation in Pacitan, Indonesia. MATEC Web of Conferences, 97. https://doi.org/10.1051/matecconf/20179701064
Wang, X., & Power, W. (2011). COMCOT: a Tsunami Generation Propagation and Run-up Model BIBLIOGRAPHIC REFERENCE (Issue August).
Wang, Z., & Jia, G. (2021). A novel agent-based model for tsunami evacuation simulation and risk assessment. Natural Hazards, 105(2), 2045–2071. https://doi.org/10.1007/s11069-020-04389-8
Wells, D. L., & Coppersmith, K. J. (1994). New empical relationship between magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.
Yunarto, Y., & Sari, A. M. (2018). Analysis of community tsunami evacuation time: An overview. IOP Conference Series: Earth and Environmental Science, 118(1). https://doi.org/10.1088/1755-1315/118/1/012033
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.