A Perspective of Geomorphology for Landslide Susceptibility and its Applied in the Taji Village-Malang Regency as Vulcanic Area
Abstract
Landslides are Indonesia's second-largest disaster during 2020-2022. Many researchers have conducted research related to landslides, i.e., landslide susceptibility with statistical, heuristic, geomorphological approaches and landslide disaster risk. The geomorphological approach is one approach in the study of landslides that can represent morphology, morphostructure, morphochronology, and morphoarrangements. This research aims to explain landslide hazard mapping using a geomorphological approach, evidenced by a case study in the Gede watershed as one of the watersheds in Taji Village. The method used in this research is Geomorphology approach using a systematic literature review. Furthermore, landslide susceptibility analysis has been carried out using a geomorphological approach with topographic position analysis a case study in Taji Village. The results showed that landslides can be more specifically identified through morphology, surface material resulting from morphochronological and morphological processes, and existing and dormant geomorphological processes. These four aspects can be used as the key to the identification of landslide hazards. Based on the geomorphological approach, as much as 52.13% is very high vulnerability located on the upper slope morphology, 25.45% high vulnerability on the middle slope, 10.16% medium vulnerability on the lower slope, and 12.26% low vulnerability on the slope morphology foot.
Keywords
Full Text:
PDFReferences
Anderson R. S. (2008). The little book of Geomorphology - Exercising the priciple of Conservation. 1–133.
Antronico, L., De Pascale, F., Coscarelli, R., & Gullà, G. (2020). Landslide risk perception, social vulnerability and community resilience: The case study of Maierato (Calabria, southern Italy). International Journal of Disaster Risk Reduction, 46(February). https://doi.org/10.1016/j.ijdrr.2020.101529
DIBI. (2023). Statistik Kebencanaan. Accessed on 28 Desember 2023, https://dibi.bnpb.go.id/
Baroň, I., Jelének, J., Klimeš, J., Dong, J. J., Melichar, R., Šutjak, M., … Kycl, P. (2024). Source area morphometry and high depletion rate of landslides may indicate their coseismic origin. Engineering Geology, 330(January). https://doi.org/10.1016/j.enggeo.2024.10742
Berhane, G., & Tadesse, K. (2021b). Landslide susceptibility zonation mapping using statistical index and landslide susceptibility analysis methods: A case study from Gindeberet district, Oromia Regional State, Central Ethiopia. Journal of African Earth Sciences, 180(August 2020), 104240. https://doi.org/10.1016/j.jafrearsci.2021.104240
Bishop, M. P., Young, B. W., Huo, D., Texas, A., Station, C., & States, U. (2018). Geomorphometry : Quantitative Land-Surface Analysis and Modeling . July, 1–17.
Bièvre, G., Jongmans, D., Winiarski, T., & Zumbo, V. (2012). Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrological Processes, 26(14), 2128–2142. https://doi.org/10.1002/hyp.7986
Borrelli, L. (2014). Geology, geomorphology and dynamics of the 15 February 2010 Maierato landslide (Calabria, Italy). Geomorphology, 208, 50–73. https://doi.org/10.1016/j.geomorph.2013.11.015
Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., & Castellani, M. (2002). System Sciences A geomorphological approach to the estimation of landslide hazards and risks in Umbria , Central Italy. May 2014. https://doi.org/10.5194/nhess-2-57-2002
Chen, W. (2018). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 164, 135–149. https://doi.org/10.1016/j.catena.2018.01.012
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
Crozier, M. (2010). Landslide geomorphology: An argument for recognition, with examples from New Zealand. Geomorphology, 120(1), 3–15. https://doi.org/10.1016/j.geomorph.2009.09.010
De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., Chu, W., Antrop, M., De Maeyer, P., Finke, P., Van Meirvenne, M., Verniers, J., & Crombé, P. (2013). Application of the topographic position index to heterogeneous landscapes. Geomorphology, 186, 39–49. https://doi.org/10.1016/j.geomorph.2012.12.015
Denyer, D., & Tranfield, D. (2009). Producing a Systematic Review. In The SAGE Handbook of Organizational Research Methods (pp. 671–689).
Du, P., Xu, Y., Guo, Y., & Li, H. (2023). Assessing loess landslide volume using high-precision UAV-derived DEM: A case study of the 15 March 2019 landslide in Zaoling Township, Xiangning County in North China. Natural Hazards Research, 3(4), 640–645. https://doi.org/10.1016/j.nhres.2023.07.006
Fang, K., Tang, H., Li, C., Su, X., An, P., & Sun, S. (2023). Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geoscience Frontiers, 14(1), 101493. https://doi.org/10.1016/j.gsf.2022.101493
Haskins, D. M., Correll, C. S., Foster, R. a, Chatoian, J. M., Fincher, J. M., Strenger, J. M., Keys Jr., J. E., Maxwell, J. R., & King, T. (1999). A geomorphic classification system. Abstracts with Programs - Geological Society of America, 31, 254.
Harzing, Anne-Wil. 2010. The Publish or Perish Book. Melbourne, Australia: Tarma Software Research
Heckmann, T. (2015). Graph theory-Recent developments of its application in geomorphology. In Geomorphology (Vol. 243, pp. 130–146). https://doi.org/10.1016/j.geomorph.2014.12.024
Heckman, K. A., Swanston, C. W., Torn, M. S., Hanson, P. J., Nave, L. E., Porras, R. C., … Bill, M. (2021). Soil organic matter is principally root derived in an Ultisol under oak forest. Geoderma, 403(April), 115385. https://doi.org/10.1016/j.geoderma.2021.115385
Hoff, R. (2018). Geology, geomorphology and wine-growing landscape: An approach to regional identity for viticulture at Campanha Wine Region, Brazil. Revista Brasileira de Geomorfologia, 19(4), 757–776. https://doi.org/10.20502/rbg.v19i4.1388
Hooke, J. M. (2020). Changing landscapes: Five decades of applied geomorphology. Geomorphology, 366, 106793. https://doi.org/10.1016/j.geomorph.2019.06.007
Hutagalung, A. (1967). Fundamental of Geomorphology. In Angewandte Chemie International Edition, 6(11), 951–952.
Juliev, M., Mergili, M., Mondal, I., Nurtaev, B., Pulatov, A., & Hübl, J. (2019). Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Science of the Total Environment, 653, 801–814. https://doi.org/10.1016/j.scitotenv.2018.10.431
Keller, E., Adamaitis, C., Alessio, P., Anderson, S., Goto, E., Gray, S., Gurrola, L., & Morell, K. (2020). Applications in geomorphology. Geomorphology, 366, 106729. https://doi.org/10.1016/j.geomorph.2019.04.001
Kinde, M., Getahun, E., & Jothimani, M. (2024). Geotechnical and slope stability analysis in the landslide-prone area: A case study in Sawla – Laska road sector, Southern Ethiopia. Scientific African, 23, e02071. https://doi.org/10.1016/j.sciaf.2024.e02071
Lillesand., dan Kiefer. (1994). Remote Sensing and Image Interpretation. Third Edition. John Wiley and Sons, New York.
Liu, M., Hu, Y., Chang, Y., He, X., & Zhang, W. (2009). Land use and land cover change analysis and prediction in the upper reaches of the minjiang river, China. Environmental Management, 43(5), 899–907. https://doi.org/10.1007/s00267-008-9263-7
Martínez-Graña, A. M., Silva, P. G., Goy, J. L., Elez, J., Valdés, V., & Zazo, C. (2017). Geomorphology applied to landscape analysis for planning and management of natural spaces. Case study: Las Batuecas-S. de Francia and Quilamas natural parks, (Salamanca, Spain). Science of the Total Environment, 584–585, 175–188. https://doi.org/10.1016/j.scitotenv.2017.01.155
Muddarisna, E. D. Yuniwati, H. Masruroh, and A. Rahman, “J OURNAL OF D EGRADED AND M INING L ANDS M ANAGEMENT The effectiveness of cover crops on soil loss control in Gede catchment of Malang Regency , Indonesia,” vol. 8, no. 2, pp. 2673–2679, 2021.
Nisa, A. K., Irawan, M. I., & Pratomo, D. G. (2019). Identification of Potential Landslide Disaster in East Java Using Neural Network Model (Case Study: District of Ponogoro). Journal of Physics: Conference Series, 1366(1). https://doi.org/10.1088/1742-6596/1366/1/012095
Nsengiyumva, J. B., Luo, G., Amanambu, A. C., Mind’je, R., Habiyaremye, G., Karamage, F., Ochege, F. U., & Mupenzi, C. (2019). Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Science of the Total Environment, 659(818), 1457–1472. https://doi.org/10.1016/j.scitotenv.2018.12.248
Nguyen, L. C., Tien, P. Van, & Do, T. N. (2020). Deep-seated rainfall-induced landslides on a new expressway: a case study in Vietnam. Landslides, 17(2), 395–407. https://doi.org/10.1007/s10346-019-01293-6
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
Putra, A. N., Nita, I., Jauhary, M. R. Al, Nurhutami, S. R., & Ismail, M. H. (2021). Landslide risk analysis on agriculture area in pacitan regency in east java indonesia using geospatial techniques. Environment and Natural Resources Journal, 19(2), 141–152. https://doi.org/10.32526/ennrj/19/2020167
Samodra, G. (2014). Development of Risk Analysis Technique and Its Application to Geo Disaster Management in Indonesia. Ph.D Dissertation: Kyusu University, Japan.
Sermin, T., & Jeff, J. (2008). GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. In Journal of Applied Sciences (Vol. 8, Issue 6, pp. 910–921).
Sofia, G. (2020). Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward. Geomorphology, 355. https://doi.org/10.1016/j.geomorph.2020.107055
Stehman, S. V., & Czaplewski, R. L. (1998). Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sensing of Environment, 64(3), 331–344. https://doi.org/10.1016/S0034-4257(98)00010-8
Sutanto. (1986). Penginderaan Jauh Jilid I. Yogyakarta: Gadjah Mada University Press.
The, S., Landslide, D., Granada, C., Azan, M., & Jime, A. (2013). Relationships Between Slope Instabilities , Active Tectonics and Drainage Relationships Between Slope Instabilities , Active ´ dar Tectonics and Drainage Systems : The Du Landslide Case ( Granada , Southern Spain ). July 2015. https://doi.org/10.1007/978-3-642-31445-2
Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning and Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464
Tooth, S., & Viles, H. (2014). 10 Reasons Why Geomorphology is Important. 17. http://geomorphology.org.uk/sites/default/files/10_reasons_full.pdf
Waele, J. De. (2011). Geomorphology and natural hazards in karst areas: A review. In Geomorphology (Vol. 134, Issue 1, pp. 1–8). https://doi.org/10.1016/j.geomorph.2011.08.001
Wang, H., Wang, J., & Zhang, G. hui. (2021). Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China. Catena, 201(3). https://doi.org/10.1016/j.catena.2021.105235
Weiss, a. (2001). Topographic position and landforms analysis. Poster Presentation, ESRI User Conference, San Diego, CA, 64, 227–245. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Topographic+Position+and+Landforms+Analysis#0
Vandromme, R., Thiery, Y., Bernardie, S., & Sedan, O. (2020). Version of Record: https://www.sciencedirect.com/science/article/pii/S0169555X20302798.
Zêzere, J. L., Trigo, R. M., & Trigo, I. F. (2005). Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Science, 5(3),
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.