NUMERICAL ANALYSIS OF STEEL MEMBER REMAINING COMPRESSIVE CAPACITY DURING SMAW WELDING

Malik Mushthofa, Astriana Hardawati

Abstract


This study investigates the influence of Shielded Metal Arc Welding (SMAW) welding parameters on the remaining compressive capacity of angle-shaped steel members used for structural strengthening. The analysis focuses on members with thin hot-rolled profiles (40.4 x 40.4 x 4.0 mm, 50.5 x 50.5 x 5.0 mm, and 60.6 x 60.6 x 6.0 mm). A finite element model simulates the heat distribution caused by welding, leading to a temperature increase within the member.  Welding scenarios are simulated using various combinations of current strength and welding speed based on the specifications for electrode type E6013. The remaining compressive capacity is determined by segmenting the cross-section based on temperature intervals and considering the member's slenderness. The analysis reveals a clear correlation between welding parameters and compressive capacity loss.  Employing a higher current and lower welding speed leads to a more significant reduction in capacity due to the resulting extensive heat-affected zone (HAZ). Conversely, the lowest current and highest speed scenario minimizes the HAZ, resulting in the highest remaining compressive capacity. The analysis demonstrates that the 40.4 x 40.4 x 4.0 mm member can retain up to 51.15% of its original capacity under these optimal conditions, while the 50.5 x 50.5 x 5.0 mm and 60.6 x 60.6 x 6.0 mm members can retain 57.79% and 75.78%, respectively. In contrast, the worst-case scenario employing high current and low speed significantly reduces the remaining capacity, with reductions down to 6.79%, 10.87%, and 10.54% for the respective member sizes. These findings highlight the importance of optimizing welding parameters to minimize the negative impact on the compressive capacity of steel members during strengthening operations.

Keywords


compressive capacity, current, heat, SMAW welding, welding speed

Full Text:

PDF

References


W.S. Alaloul, M. Altaf, M.A. Musarat, M. Faisal Javed, A. Mosavi. (2021). Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study. Sustainability 2021, 13, 4377. dx.doi.org/10.20944/preprints202103.0316.v1

Robert Osei-Kyei, Vivian Tam, Mingxue Ma, Fidelis Mashiri. (2021). Critical review of the threats affecting the building of critical infrastructure resilience. International Journal of Disaster Risk Reduction, Volume 60. 102316, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2021.102316

Sarah Bell, Charlotte Johnson, Kat Austen, Gemma Moore, Tse-Hui Teh. (2023). ”Co-designing Infrastructures”. ISBN: 9781800082229. UCL Press.

http://dx.doi.org/10.14324/111.9781800082229

R. Kazancıoğlu, Özcan Erdoğan. (2023). Resilience of hospital in disaster. Journal of Design for Resilience in Architecture and Planning, 4 (Special Issue), 141–151. https://doi.org/10.47818/DRArch.2023.v4si115

Charles G. Salmon, John E. Johnson, Faris A. Malhas. (2008). ”Steel Structures: Design and Behavior (5th Edition)”. Prentice Hall

Welding Research Council. (2005). Welding Research Council Bulletin: ”Welding of Steel Structures for Seismic Resistance” (https://www.aws.org/)

D.K. Dwivedi. (2022). Arc Welding Processes: Shielded Metal Arc Welding: Welding Current and Metal Transfer. In: ”Fundamentals of Metal Joining”. Springer, Singapore. https://doi.org/10.1007/978-981-16-4819-9_12

American Institute of Steel Construction. (2017). ”Modern Steel Construction Manual”. AISC

D. Wang, Weihong Zhang, J. Jiang. (2002). Combined shape and sizing optimization of truss structures. Computational Mechanics. 29. 307-312. http://dx.doi.org/10.1007/s00466-002-0343-x

Mehdi Jalalpour, Takeru Igusa, James K. Guest. (2011). Optimal design of trusses with geometric imperfections: Accounting for global instability. International Journal of Solids and Structures, Volume 48, Issue 21, Pages 3011-3019, ISSN 0020-7683, https://doi.org/10.1016/j.ijsolstr.2011.06.020.

Limin Lu, Guanglin Yuan, Zhaohui Huang, Qianjin Shu, Qing Li. (2017). Performance-based analysis of large steel truss roof structure in fire. Fire Safety Journal, Volume 93, Pages 21-38, ISSN 0379-7112, https://doi.org/10.1016/j.firesaf.2017.08.002.

R.H. Leggatt. (2008). Residual stresses in welded structures. International Journal of Pressure Vessels and Piping. 85. 144-151. http://dx.doi.org/10.1016/j.ijpvp.2007.10.004

Malik Mushthofa, Fakhri Pratama Nurfauzi, Astriana Hardawati. (2023). Investigation of effective section reduction in low carbon steel during SMAW welding. Teknisia 28(2):79-89

http://dx.doi.org/10.20885/teknisia.vol28.iss2.art2

John C. Lippold. (2014). ”Welding Metallurgy and Weldability”. ISBN:9781118230701. John Wiley & Sons, Inc. DOI:10.1002/9781118960332

J. Zhou, H.L. Tsai. (2005). Welding heat transfer. Woodhead Publishing Series in Welding and Other Joining Technologies, Processes and Mechanisms of Welding Residual Stress and Distortion. Woodhead Publishing, Pages 32-98, ISBN 9781855737716, https://doi.org/10.1533/9781845690939.1.32.

Chai H Yoo, Sung Lee. (2011). ”Stability of Structures Principles and Applications”. ISBN: 9780123851222. Butterworth-Heinemann

Luca Possidente, Nicola Tondini, Jean-Marc Battini. (2021). Numerical analysis of the torsional and flexural‐torsional buckling behaviour of compressed steel members at elevated temperature. ce/papers (Proceedings in civil engineering) 4. 1239-1245. http://dx.doi.org/10.1002/cepa.1417

Y. Zhang, G. Shi, Z. Liu, Y. Wang, Y. Shi. (2011). Finite element analysis and design method study for the local buckling of high-strength steel equal angles under axial compression. Tumu Gongcheng Xuebao/ China Civil Engineering Journal. 44. 27-34.

Yueqi Bi, Xiaoming Yuan, Mingrui Hao, Shuai Wang, He Xue. (2022). Numerical Investigation of the Influence of Ultimate-Strength Heterogeneity on Crack Propagation and Fracture Toughness in Welded Joints. Materials. 15. 3814. 10.3390/ma15113814.

Zhuyao Zhang, Steve Roberts, Josh Wildgoose, Will Philpott, Mark Jepson. (2024). Effects of post-weld heat treatment on the microstructure and properties of the matching SMAW filler metal for weld joints in MarBN steel. Welding in the World. 10.1007/s40194-023-01653-w.

Huan Qi, Pang Qihang, Weijuan Li, and Shouyuan Bian. (2024). The Influence of the Second Phase on the Microstructure Evolution of the Welding Heat-Affected Zone of Q690 Steel with High Heat Input. Materials. 17. No. 3: 613.

https://doi.org/10.3390/ma17030613

Yue Zhang, Jun Xiao, Wei Liu, and Aimin Zhao. (2021). Effect of Welding Peak Temperature on Microstructure and Impact Toughness of Heat-Affected Zone of Q690 High Strength Bridge Steel. Materials .14. No. 11: 2981.

https://doi.org/10.3390/ma14112981

Klas Weman. (2003). ”Welding processes handbook Second Edition”. Woodhead Pub. ISBN 978-0-85709-518-3

C.H. Yoo, & S. Lee. (2011). ”Stability of Structures: Principles and Applications”. Butterworth-Heinemann. Elsevier. ISBN: 978-0-12-385122-2

http://dx.doi.org/10.1016/C2010-0-66075-5

Lingyu Zhou, Liqiang Jiang, Liping Wang. (2022). ”Design of Steel Structures: Materials, Connections, and Components”. ISBN 978-0-323-91682-0. Published by Elsevier. https://doi.org/10.1016/C2021-0-00344-8

Leroy Lutz. (2006). Evaluating single-angle compression struts using an effective slenderness approach. Engineering Journal (New York). 43. 241-246.

William T. Segui. (2006). ”Steel Design 5th”. ISBN-13: 978-1-111-57600-4. Cengage Learning

Yordan Denev. (2022). Analyze of Welding Arc Parameters In Shielded Metal Arc Welding. International Scientific Journal "Machines. Technologies. Materials". Year xvii, issue 2, p.p. 80-82 (2023) http://dx.doi.org/10.5281/zenodo.6884587.

American Society of Mechanical Engineers (ASME) Section IX. (2021). ”The qualification standard for welding and brazing procedures”.

British Standard BS EN 1011-1. (2009). ”Welding — Recommendations for welding of metallic materials”.

Rudra Singh, R.C. Gupta, S. Sarkar. (2013). Analysis of Depth of Penetration and Bead Width of Shielded Metal Arc Weld under Magnetic Field Applying Artificial Neural Networks. International Journal of Science, Engineering and Technology Research (IJSETR) Volume 2, Issue 2, February 2013 10.13140/RG.2.2.25076.14722.

D.S. Nagesh, G.L. Datta. (2002). Prediction of weld bead geometry and prediction in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology. 123. 303–312. 10.1016/S0924-0136(02)00101-2.

Sudhir Kumar, Rajender Singh. (2019). Investigation of tensile properties of shielded metal arc weldments of AISI 1018 mild steel with preheating process. Materials Today: Proceedings. 26.

http://dx.doi.org/10.1016/j.matpr.2019.10.167

Ashok Tadamalle, Y. Reddy. (2020). Fatigue Life Prediction of Dissimilar Metal Laser Weld Joints. Journal of The Institution of Engineers (India): Series C. 101.

http://dx.doi.org/10.1007/s40032-020-00603-5

Michael Bassey, Jephtar Ohwoekevwo, Aniekan Ikpe. (2024). Thermal analysis of AISI 1020 low carbon steel plate agglutinated by gas tungsten arc welding technique: a computational study of weld dilution using finite element method. Journal of Engineering and Applied Science. 71. 1-22. 10.1186/s44147-024-00375-0.

Anthony Murphy, John Lowke. (2017). ”Handbook of Thermal Science and Engineering”. ISBN : 978-3-319-32003-8. Springer. http://dx.doi.org/10.1007/978-3-319-26695-4_29.

Zong Ran, J. Chen, C.S. Wu, Girish Padhy. (2016). Influence of shielding gas on undercutting

formation in gas metal arc welding. Journal of Materials Processing Technology. 234. 169-176. 10.1016/j.jmatprotec.2016.03.020.

Paul Kah, Hamidreza Latifi, Raimo Suoranta, Jukka Martikainen, Markku Pirinen,. (2014). Usability of arc types in industrial welding. International Journal of Mechanical and Materials Engineering. 9. 1-12. 10.1186/s40712-014-0015-6.

Wei Lu, Pentti Mäkeläinen, Painopörssi. (2003). ”Advanced Steel Structures - Fire and Fatigue Design”. Helsinki University of Technology.

Mina Seif, Joseph Main, Jonathan Weigand, Fahim Sadek, Lisa Choe, Chao Zhang, John Gross, William Luecke, David McColskey. (2016). ”Temperature-Dependent Material Modeling for Structural Steels: Formulation and Application”. NIST Technical Series Publications.




DOI: https://doi.org/10.24815/jts.v13i1.38289

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


2021 | Jurnal Teknik Sipil Unsyiah