Kajian Senyawa Tiramin dalam produk Olahan: Kajian Literatur

Setyaning Pawestri, Fathma Syahbanu

Abstract


Recently, food safety issues can be affected by several bioactive compounds such as biogenic amines that can be specifically found in fermented foods due to bacterial decarboxylation of some amino acids by fermentation or spoilage bacteria. Tiramin is a biogenic amine produced through decarboxylation of the amino acid tyrosine in animals, plants and microorganisms. Tiramin can cause adverse health effects, such as histamine and tyramine poisoning, histamine and tyraminentolerance, or hypertensive crisis caused by the interaction between tyramine and monoamine oxidase inhibitor drugs. Tiramin is often found in fermented, aged, preserved, and spoiled foods where microbes with decarboxylase enzymes convert the amino acid tyrosine to tyramine. Therefore, information related to rapid and sensitive determination methods for tyramine in various types of food is urgently needed to properly monitor and control the safety of food products. The development of modern technology in food storage (e.g., temperature and pH, packaging) can decrease tyrosine decarboxylase activity and reduce tyramine levels in modern foods. The aim of this article was to review the study of tyramine compounds contained in food products, such as tyramine compounds, issues related to tyramine, the mechanism of action of tyramine in the human body, pathophysiology, clinical significance, pharmacology of tyramine, the toxicity of tyramine, methods commonly used to detect the presence of tyramine compounds, and the methods that can be performed to reduce tyramine levels in food products to tolerable limits according to applicable regulations. This article review was conducted using the narrative literature review method. 


Keywords


detection method; fermented food; food safety; tyramine; toxicity

Full Text:

PDF

References


Alvarez, M.A. & Moreno-Arribas, V. 2014. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science and Technology. 39: 146–155.

Andersen, G., Marcinek, P., Sulzinger, N., Schieberle, P., Krautwurst, D. 2019. Food sources and biomolecular targets of tiramin. Nutrition Reviews. 77(2): 107-115.

Babusyte, A., Kotthoff, M., Fiedler, J., Krautwurst, D. 2013. Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. Journal of Leukocyte Biology. 93(3): 387-394.

Berry, M.D. 2004. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. Journal of Neurochemistry. 90(2): 257-271.

Boffi, A., Favero, G., Federico, R., Macone, A., Antiochia, R., Tortolini, C., Sanzo, ´ G., & Mazzei, F. 2015. Amine oxidase-based biosensors for spermine and spermidine determination. Analytical and Bioanalytical Chemistry. 407(4): 1131–1137. https:// doi.org/10.1007/s00216-014-8324-4.

Brown, C., Taniguchi, G., Yip, K. 1989. The monoamine oxidase inhibitor-tiramin interaction. Journal of Clinical Pharmacology. 29(6): 529-532.

Bugda, G.K., González, D.P., Olliffe, N., Oller, H., Hoffing, R., Puzan, M., El Aidy, S., Miller, G.M. 2020. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cellular and Molecular Neurobiology. 40(2): 191-201.

Broadley, K.J. 2010. The vascular effects of trace amines and amphetamines. Pharmacology & Therapeutics. 125(3): 363-375.

Callejón S, Sendra R, Ferrer S, Pardo I. 2017. Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tiramin. PLoS One. 12(10): e0186019. doi: 10.1371/journal.pone.0186019. PMID: 29020076; PMCID: PMC5636118.

Carpéné, C., Galitzky, J., Belles, C., Zakaroff-Girard, A. 2018. Mechanisms of the antilipolytic response of human adipocytes to tiramin, a trace amine present in food. Journal of Physiology and Biochemistry. 74(4): 623-633.

Chemical Entities of Biological Interest (ChEBI). 2022. Tiramin. Retrieved from https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15760.

Collins, J.D., Noerrung, B., Budka, H., Andreoletti, O., Buncic, S., Griffin, J., Hald, T., Havelaar, A., Hope, J., Klein, G. 2011. Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal. 9: 2393.

Comas-Basté, O., Latorre-Moratalla, M. L., Sánchez-Pérez, S., Veciana-Nogués, M. T., and Vidal-Carou, M. C. 2019. “Histamine and other biogenic amines in food. from scombroid poisoning to histamine intolerance,” in Biogenic Amines. ed. C. Proestos (London: IntechOpen). doi: 10.5772/intechopen.84333

Comas-Basté, O., Sánchez-Pérez, S., Veciana-Nogués, M. T., Latorre-Moratalla, M., and Vidal-Carou, M. C. 2020. Histamine intolerance: the current state of the art. Biomolecules 10, 1–26. doi: 10.3390/biom10081181

Compagnone, D., Isoldi, G., Moscone, D., & Palleschi, G. 2001. Amperometric detection of biogenic amines in cheese using immobilized diamine oxidase. Analytical Letters. 34(6): 841–854. https://doi.org/10.1081/AL-100103596.

Costa, D. J. E., Martínez, A. M., Ribeiro, W. F., Bichinho, K. M., Di Nezio, M. S., Pistonesi, M. F., & Araujo, M. C. U. 2016. Determination of tryptamine in foods using square wave adsorptive stripping voltammetry. Talanta. 154: 134–140. https://doi.org/10.1016/j.talanta.2016.03.063.

Costa, M.R., Glória, M.B.A. 2023. Migraine and Diet. In Benjamin Caballero, Encyclopedia of Food Sciences and Nutrition (Second Edition).

D'Andrea, G., Terrazzino ,S., Fortin, D., Farruggio, A., Rinaldi, L., Leon, A. 2003. HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neuroscience Letters. 346(1-2): 89-92.

D'Andrea, G., Nordera, G.P., Perini, F., Allais, G., Granella, F. 2007. Biochemistry of neuromodulation in primary headaches: focus on anomalies of tyrosine metabolism. Journal of the Neurological Sciences. Suppl 2: S94-6.

Dapkevicius M.L.E., Nout M.R., Rombouts F.M., Houben J.H., Wymenga W. 2000. Biogenic amine formation and degradation by potential fish silage starter microorganisms. International Journal of Food Microbiology. 57: 107–114. doi: 10.1016/S0168-1605(00)00238-5.

Doeun, D., Davaatseren, M., Chung, M.S. 2017. Biogenic amines in foods. Food Science and Biotechnology. 26(6): 1463-1474.

Domínguez, R., Munekata, P.E., Agregan, R., Lorenzo, J.M. 2016. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT - Food Science and Technology. 71: 47–53. doi: 10.1016/j.lwt.2016.03.016.

Dong, C., Shi, S., Zhong, Q., Wan, W., Li, F., Xia, X. 2021. Progress in the Inhibitory Effect and Mechanism of Starter Cultures on the Formation of Tiramin in Fermented Meat Products (Review). Food Science. 42(19): 317-324. 10.7506/spkx1002-6630-20200701-009.

Dong, C., Shi, S., Pan, N., Du, X., Li, H. and Xia, X., 2022. Inhibitory mechanism of tyramine-degrading strains on reducing tyramine accumulation in Harbin dry sausage during fermentation. Food Control. 137: 108952.

EFSA Panel on Biological Hazards. 2011. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal. 9: 2393.

Erim, F.B. 2013. Recent analytical approaches to the analysis of biogenic amines in food samples. Trends in Analytical Chemistry. 52: 239–247.

Finberg, J. P. M., & Gillman, K. 2011. Selective inhibitors of monoamine oxidase type B and the “cheese effect.” In M. B. H. Y. and P. Douce (Ed.), International Review of Neurobiology (Vol. 100, pp. 169–190). Academic Press.

FAO. 2014. Assessment and management of seafood safety and quality: Current practices and emerging issues. FAO Fisheries and Aquaculture Technical Paper, p. 574.

Gainetdinov, R.R., Hoener, M.C., Berry, M.D. 2018. Trace Amines and Their Receptors. Pharmacological Reviews. 70(3): 549-620.

Garcıa-Villar, N., Hernandez-Cassou, S. & Saurina, J. 2009. Determination of biogenic amines in wines by pre-column derivatization and high-performance liquid chromatography coupled to mass spectrometry. Journal of Chromatography A. 1216: 6387–6393.

Gardini, F., Özogul, Y., Suzzi, G., Tabanelli, G., Özogul, F. 2016. Technological factors affecting biogenic amine content in foods: A review. Frontiers in Microbiology. 7: 1218. doi: 10.3389/fmicb.2016.01218.

Gezginc, Y., Akyol, I., Kuley, E., Ozogul, F. 2013. Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chemistry. 138: 655–662.

Ghose, K., Coppen, A., Carrol, D. 1977. Intravenous tyramine response in migraine before and during treatment with indoramin. British Medical Journal. 1(6070): 1191-3.

Gillman, P.K. 2018. A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths. Journal of Neural Transmission (Vienna). 125(11): 1707-1717.

Gong, X., Qi, N.L., Wang, X.X., Lin, L.J. & Li, J.H. (2014). Ultraperformance convergence chromatography (UPC2) method for the analysis of biogenic amines in fermented foods. Food Chemistry, 162, 172–175.

González-Jiménez, M., Arenas-Valgañón, J., García-Santos, M. del P., Calle, E., Casado, J. 2017. Mutagenic products are promoted in the nitrosation of tiramin. Food Chemistry. 216: 60–65.

Gonçalves da Silva, A., Franco, D. L., & Santos, L. D. 2021. A simple, fast, and direct electrochemical determination of tyramine in Brazilian wines using low-cost electrodes. Food Control. 130: 108369. doi:10.1016/j.foodcont.2021.108369.

Guarcello, R., De Angelis, M., Settanni, L., Formiglio, S., Gaglio, R., Minervini, F., Moschetti, G., Gobbetti, M. 2016. Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines. Applied and Environmental Microbiology. 82: 6870–6880. doi: 10.1128/AEM.01051-16.

Jia, S., Kang, Y.P., Park, J.H., Lee, J., and Kwon, S.W. 2012. Determination of biogenic amines in Bokbunja (Rubus coreanus Miq.) wines using a novel ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Food Chemistry, 132, 1185–1190.

Laranjo, M., Potes, M.E., Elias, M. 2019. Role of Starter Cultures on the Safety of Fermented Meat Products. Frontiers in Microbiology. 10: 853.

Latorre-Moratalla, M. L., Comas-Basté, O., Bover-Cid, S., and Vidal-Carou, M. C. 2017. Tiramin and histamine risk assessment related to consumption of dry fermented sausages by the Spanish population. Food and Chemical Toxicology. 99: 78–85. doi: 10.1016/j.fct.2016.11.011.

Lee, J., Jin, Y.H., Pawluk, A.M., and Mah, J.H. 2021. Reduction in Biogenic Amine Content in Baechu (Napa Cabbage) Kimchi by Biogenic Amine-Degrading Lactic Acid Bacteria. Microorganisms. 9(12):2570. doi: 10.3390/microorganisms9122570. PMID: 34946171; PMCID: PMC8704687.

Li, L., Wen, X., Wen, Z., Chen, S., Wang, L., and Wei, X. 2018. Evaluation of the biogenic amines formation and degradation abilities of Lactobacillus curvatus from Chinese bacon. Frontiers in Microbiology. 9: 1015. doi: 10.3389/fmicb.2018.01015.

Linares, D.M., del Rio, B., Ladero, V. et al. 2013. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. International Journal of Food Microbiology. 165, 43–50.

Lindemann, L., Hoener, M.C. 2005. A renaissance in trace amines inspired by a novel GPCR family. Trends in Pharmacological Sciences. 26(5): 274-281.

Mah, J.H., Park, Y.K., Jin, Y.H., Lee, J.H., and Hwang H.J. 2019. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods. 8: 85. doi: 10.3390/foods8020085.

Mayr, C.M., and Schieberle, P. 2012. Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS. Journal of Agricultural and Food Chemistry. 60: 3026–3032.

McCabe, B.J. 1986. Dietary tyramine and other pressor amines in MAOI regimens: a review. Journal of the American Dietetic Association. 86(8): 1059-64.

Naila, A., Flint, S., Fletcher, G., Bremer, P. & Meerdink, G. 2010. Control of biogenic amines in food existing and emerging approaches. Journal of Food Science. 5: R139–R150.

Ngo, A.S., Ho, R.Y., Olson, K.R. 2010. Phenelzine-induced myocardial injury: A case report. Journal of Medical Toxicology. 6: 431-434.

Onal, A., Tekkeli, S.E.K., and Onal, C. 2013. A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chemistry. 138: 509–515.

Ordonez, J.L., Troncoso, A.M., Garcıa-Parrilla, M.C., and Callejon, R.M. 2016. Recent trends in the determination of biogenic amines in fermented beverages: a review. Analytica Chimica Acta. 939: 10–25.

Park, Y.K., Lee, J.H., and Mah, J.H. 2019. Occurrence and reduction of biogenic amines in kimchi and Korean fermented seafood products. Foods. 8: 547. doi: 10.3390/foods8110547.

Paulsen, P., Grossgut, R., Bauer, F., Rauscher Gabernig, E. 2012. Estimates of maximum tolerable levels of tyramine content in foods in Austria. Journal of Food and Nutrition Research. 51: 52–59.

Pei, Y., Asif-Malik, A., Canales, J.J. 2016. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Frontiers in Neuroscience. 10: 148. doi: 10.3389/fnins.2016.00148. PMID: 27092049; PMCID: PMC4820462.

Raiteri, M., Del Carmine, R., Bertollini, A., Levi, G. 1977 Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. European Journal of Pharmacology. 41(2): 133-143.

Redruello, B., Ladero, V., Del Rio, B., Fernandez, M., Martin, M.C. & Alvarez, M.A. 2017. A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chemistry. 217: 117–124.

Ruiz-Capillas, C., Herrero, A.M. 2019. Impact of Biogenic Amines on Food Quality and Safety. Foods. 8(2): 1-16.

Saelao, S., Maneerat, S., Thongruck, K., Watthanasakphuban, N., Wiriyagulopas, S., Chobert, J.-M., & Haertlé, T. 2018. Reduction of tyramine accumulation in Thai fermented shrimp (kung-som) by nisin Z-producing Lactococcus lactis KTH0-1S as starter culture. Food Control. 90: 249–258. doi:10.1016/j.foodcont.2018.03.003.

Salter, M., Kenney, A. 2018. Myocardial Injury from Tranylcypromine-Induced Hypertensive Crisis Secondary to Excessive Tiramin Intake. Cardiovascular Toxicology. 18(6): 583-586.

Sathyanarayana Rao, T.S., Yeragani, V.K. 2009. Hypertensive crisis and cheese. Indian Journal of Psychiatry. 51(1):65-6. doi: 10.4103/0019-5545.44910.

Shalaby, A.R. 1996. Significance of biogenic amines to food safety and human health. Food Research International. 29: 675–690.

Silla Santos, M.H. 1996. Biogenic amines: their importance in foods. International Journal of Food Microbiology. 29(2-3): 213–231.

Smith, S.B., Maixner, D.W., Fillingim, R.B., Slade, G., Gracely, R.H., Ambrose, K., Zaykin, D.V., Hyde, C., John, S., Tan, K., Maixner, W., Diatchenko, L. 2012. Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia. Arthritis & Rheumatology. 64(2): 584-593.

Sun, Q., Chen, Q., Li, F., Zheng, D., & Kong, B. (2016). Biogenic amine inhibition and quality protection of Harbin dry sausages by inoculation with Staphylococcus xylosus and Lactobacillus plantarum. Food Control. 68: 358–366. doi:10.1016/j.foodcont.2016.04.021.

Stockley’s Drug Interactions. 2011. The Royal Pharmaceutical Society of Great Britain. Retrieved from www. medicinescomplete.com/mc/stockley/current/x18-1097.htm.

Taban, B.M., Dogan Halkman, H.B., Halkman, A.K. 2014. Biology of the Enterococcus spp. In Carl A. Batt and Mary Lou Tortorello (2nd Ed.), Encyclopedia of Food Microbiology (pp. 652-657). Academic Press.

Tangwatcharin, P., Nithisantawakhup, J., Sorapukdee, S. 2019. Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som. Asian-Australasian Journal of Animal Sciences. 32(10):1580-1590.

Tapingkae, W., Tanasupawat, S., Parkin, K. L., Benjakul, S., and Visessanguan, W. 2010. Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzyme and Microbial Technology. 46:92–99.

Telsnig, D., Kalcher, K., Leitner, A., & Ortner, A. 2013. Design of an Amperometric Biosensor for the Determination of Biogenic Amines Using Screen Printed Carbon Working Electrodes. Electroanalysis. 25: 47–50. https://doi.org/10.1002/elan. 201200378.

Telsnig, D., Terzic, A., Krenn, T., Kassarnig, V., Kalcher, K., & Ortner, A. 2012. Development of a voltammetric amine oxidase-modified biosensor for the determination of biogenic amines in food. International Journal of Electrochemical Science. 7(8): 6893–6903.

Tittarelli, F., Perpetuini, G., Di Gianvito, P., & Tofalo, R. 2018. Biogenic amines producing and degrading bacteria: A snapshot from raw ewes’ cheese. LWT. doi:10.1016/j.lwt.2018.11.030

Tenbrink, B., Damirik, C., Joosten, H.M.L.J. and Huis in’t Veld, H.J. 1990. Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology. 11: 73–84.

Tosukhowong, A., Visessanguan, W., Pumpuang, L., Tepkasikul, P., Panya A., and Valyasevi R. 2011. Biogenic amine formation in Nham, a Thai fermented sausage, and the reduction by commercial starter culture, Lactobacillus plantarum BCC 9546. Food Chemistry. 129: 846–853. doi: 10.1016/j.foodchem.2011.05.033.

Toy, N., Özogul, F., & Özogul, Y. 2015. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth. Food Chemistry, 173: 45–53. doi:10.1016/j.foodchem.2014.10.00.

Trupin, S. 2017. A perspective on the editorial by Ken Gillman: '"Much ado about nothing': monoamine oxidase inhibitors, drug interactions, and dietary tyramine''. CNS Spectrums. 22(5): 390.

Varounis, C., Katsi, V., Nihoyannopoulos, P., Lekakis, J., Tousoulis, D. 2016. Cardiovascular Hypertensive Crisis: Recent Evidence and Review of the Literature. Frontiers in Cardiovascular Medicine. 3: 51.

Wang, Y., Sun, Y., Zhang, X., Zhang, Z., Song, J., Gui, M., & Li, P. 2015. Bacteriocin-producing probiotics enhance the safety and functionality of sturgeon sausage. Food Control. 50: 729–735. doi:10.1016/j.foodcont.2014.09.045.

Wang, H., Liu, J., Chen, Q., Kong, B., & Sun, F. 2021. Biochemical properties of extracellular protease from Staphylococcus epidermidis isolated from Harbin dry sausages and its hydrolysis of meat protein. Food Bioscience. 42: 101130. doi:10.1016/j.fbio.2021.101130.

Wust, N., Rauscher-Gabernig, E., Steinwider, J., Bauer, F., and Paulsen, P. 2017. Risk assessment of dietary exposure to tryptamine for the Austrian population. Food Additives & Contaminants: Part A. 34: 404-420.

Xing, X., Liu, S., Yu, J., Lian, W., and Huang, J. 2012. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosensors and Bioelectronics. 31(1): 277–283. https://doi.org/10.1016/j. bios.2011.10.032.

Yilmaz, U. T., and Inan, D. 2015. Quantification of histamine in various fish samples using square wave stripping voltammetric method. Journal of Food Science & Technology. 52(10): 6671–6678. https://doi.org/10.1007/s13197-015-1748-9.

Zhang, H., Yin, C., Xu, L., Prinyawiwatkul, W., & Xu, Z. 2019. An improved determination method for tyramine in foods using ultra-high performance liquid chromatography with benzylamine as internal standard. International Journal of Food Science & Technology. 54(6): 1-7. doi:10.1111/ijfs.14115.




DOI: https://doi.org/10.17969/jtipi.v16i1.31391

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Teknologi dan Industri Pertanian Indonesia





Creative Commons LicenseISSN: 1411-4623E-ISSN: 2460-4534
Copyright© 2009-2024 | ISSN: 2085-4927 | EISSN: 2442-7020 
JTIPI is licensed under a Creative Commons Attribution 4.0 International License.

 

Published by: 
Agricultural Product Technology Department, Faculty of Agriculture, Univerisitas Syiah Kuala 

Supported by
LPPM USK
Himpunan Profesi (patpi)
AFTA


Address: 
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Email: jtipi@usk.ac.id


Online Submissions & Guidelines Editorial Policies | Contact Statistics Indexing | Citations