Analisa Mikrosatelit dalam Bioteknologi Reproduksi Ternak (Suatu Kajian Pustaka)
Abstract
Microsatellite analysis in biotechnology of animal reproduction (A Review)
ABSTRACT. In year 1970 was found nucleotide sequence which have repeated sequence of nucleotide. with high polymorh and using PCR could be amplified. That sequenz of nucleotide called Microsatelite. Microsatelite consist of 1 – 6 repeated nucleotide, which is CA repeated as mostly a repeated DNA in the animal (Tautz and Renz, 1984). Based on difference of long and amount of repeated nucleotide, there are three kind of DNA satelite, midi-, mini- and microsatelite (Matiat and Vergmaud, 1982). Microsatelite analysis was used to analyze of paternity and identity of animal, which was done as a conventional analysis with blood group analysis. The advantage of microsatelite analysis compare to blood group system are the exclution probability was high (EXP 99.9%), needs small sampel (tissues, sperm or follicel of hair), could be use for all animal without special age and possible for died animal.
Keywords
Full Text:
PDFReferences
Alvarez, I., Royo, L.J., Fernandez, I., Gutierez, J.P., Gomez, E., Goyache, F., 2004. Genetic relationships and admixture among sheep breeds from Northern Spain assessed using microsatellites. Journal of Anim. Sci. 82: 2246-2252
Arranz, J.J., Bayon, Y., San Primotivo, 2001. Differentiation among Spanish sheep breeds using microsatellites. Gen. Selec. Evol. 33: 529-542
Baumung, R., Siminier, H., Hoffmann, I., 2004. Genetic diversity studies in farm animals – a survey. J. of Anm. Breed. and Gen. 121: 361-373
Binns, M.M., Holmes, N.G., Marti, E., and Bowen, N., 1995. Dog parentage testing using Canine microsatelite. J. of Small Anim. Pract. 36: 493-497
Botstein, D., White, R.L., Skolnick, M., Davis RW., 1980. Construction of a genetic linkage map using restriction fragment length polymorphism. Am. J. of Hum. Gen. 32: 314-331
Bowling A.T., Eggleston, M.L., Byrns, G., Clark, R.S., de Leanis, S., Wictum, E., 1997. Validation of microsatellite markers for routine horse parentage testing. Anim. Gen. 28: 247- 252
Cornnell, C., 1987. Automated DNA sequence analysis. Bio Tech. 5: 342-348
Diehl, S.R., Ziege, J., Buck, G.A., Reynolds, T.R. and Weber, J.L., 1990. Automated genotyping of human DNA polymorphism. Am. J. of Hum. Gen. 49: 746-756
Diez-Tascon, C., Littlejohn, R.P., Almeida, P.A., Crawford, A.M., 2000. Genetic variation within the Merino sheep breeds: analysis of closely related populations using microsatellites. Anim. Gen. 31: 243-251
Ellegren, H., 1995. Mutation rates at porcine microsatellite loci. Mammalian Genome 6: 376-377
Fredholm, M., and Wintero, A.K., 1996. Efficient resolution of parentage in dogs by amplification of Microsatellites. Anim. Gen. 27: 19-23
Fu, Y.H., Kuhl, D.P.A., Pizzutii, M., Pieretti, M., Sutcliffe, J.S., Richards, S., Verkerk, A., Holden, J., Fenwick, R., and Warren, S.T., 1991. Variation of the CGG repeat at the fragile X Site result in genetic instability: Resolution of the Sherman paradox. Cell. 67: 1047-1058
Glowatski-Mulli, M.L, Gaillard, C., Wigger, G, Fries, R., 1995. Microsatellite based parentage control in cattle. Anim. Gen. 26: 7-12
Gordenin, D.A., Kunkel, T.A., Resnick, M.A., 1997. Repeat expansion all in a flap. Nat. Gen. 16: 116-118
Groenen M.A.M., Joosten, R., Boscher, M.Y., Amigues, Y., Rattink, A., Harlizius, B., van der Poel, J.J. and Crooijmans, R., 2003. The use of microsatellite grnotyping for population studies in the pig with individual and pooled DNA samples. Arch. Zoo. 52: 145-155
Hamada, H., Petrino, M.G., Kakunaga, T., Seidman, M. and Stollar, B.D., 1984. Characterization of poly(dT-dG). poly(dC-dA) sequences: structure, organization and conformation. Mol. and Cell. Biol. 4(12): 2610-2621
Hertner, U., Ruβ, I. and Förster, M., 1999. DNA-Typisierung – die Methode der Zukunft. Arab. J. 5: 46-50
Heyen, D.W, Beever, J.E, Da, Y., Evert, R.E., Green, C., Bates, S.R.E., Ziegle, J.S. and Lewin, H.A., 1997. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semiautomated parentage testing. Animal Genetics 28: 21-27
Hohenhörst, J., Fries, R., Vögeli, P. and Stranzinger, G., 1994. Use microsatellites for parentage control in pigs. Anim. Gen. 25 (Suppl.2): 33
Hohenhörst, J., 1997. Hochpolymorph DNA-Markerloci im Schweinegenom und ihre Verwendung für die Abstammungs-kontrole, Characterisierung von Schweine-rassen und Kartierung von Blutgruppenloci. Dissertation, Eidgenössischtechnische Hochschule Zürich
Jamieson, A. and Taylor, S.C.S., 1997. Comparisons of three probability formulae for parentage exclusion. Anim. Gen. 28: 397-400
Jeffreys, A.J., Royle, N.J., Wilson, V. and Wong, Z., 1988. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nat. 332: 278-281
Klesert, R.T., Otten, A.D., Bird, T.D. and Tapscott, S.J., 1997. Trinucleotide repeat expansion at the myotonic locus reduces expression of DMAHP. Nat. Gen. 16: 402-406
Koskinen, M.T. and Bredbacka, P., 1999. A convenient and efficient microsatellite based assay for resolving parentages in dogs. Anim. Gen. 30: 148-149
Lauk, C., 1999. Abstammungsbegutachtung bei Lamas und Alpakas. Lamas: 8-9
Levinson, G. and Gutman, G.A., 1987. Slipped strand mispairing: a major mechanism for DNA sequence evolution. Mol and Biol. Evol. 4: 203-221
Litt, M. and Luty, J.A., 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. of Hum. Gen. 44: 397-401
Mullis, K.B. and Faloona, F.A., 1987. Specific synthesis of DNA in vitro polymerase catalyzed chain reaction. Meth. of Enz. 155: 335-350
Naylor, L.H. and Clark, E.M., 1990. d(TG) n.d (CA)n sequences upstream of the rat prolactin gene Z-DNA and inhibits gene transcription. Necl. Acids Res. 18: 1594-1601
Nei, M., 1973. Analysis of gene diversity in subdivided populations. In: Proceedings of Nature Academic Science. USA 70. pp: 3321-3323
Nie, L., Ziele, S., Su, Y., Meyer, J., MacLean, C., McBride, L., Kronick, M. and Diehl, S., 1991. Automated genotyping of highly polymorphic human DNA markers: Progress in multiplexing and optimal locus combination strategies. Am. J. of Hum. Gen. 49(Suppl.): 366
Pennisi, E., 1998. How the genome readies itself for evolution. Sci. 281: 1131-1134
Rasad, S.D., 2001. Abstammungs-und Identitätskontrole beim Schwein mittels microsatelitenanalyse. Dissertation PhD, Bonn University, Cuvillier, Goettingen.
Rendo, F., Iriondo, M., Jugo, M.B., Mazon, L.L., Aguirre, A., Vicario, A. and Estonba, A., 2004. Tracking diversity and differentiation in six sheep breeds from north Iberian Peninsula through DNA variation. Small Ruminant Research. 52: 196-202
Saiki, R.K, Gelfund, D.H, Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A., 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Sci. 239: 487-491
Schlötterer, C. and Tautz, D., 1992. Slippe synthesis of simple sequence DNA. Nuc. Acid Res. 20: 211-215
Smith, L.M., Sanders, J.Z., Kaiser, R.J., Hughes, P., Dodd, C., Connell, C.R., Heiner, C., Kent, S.B.H. and Hood, L.E., 1986. Fluorescence detection in automated DNA sequence analysis. Nat. 321: 674-679
Sonnentag, J., Ronald, L.C., Martin, W., William, K. H., 2009. El Niño and Marine Iguana (Amblyrhynchus cristatus) Reproduction and Genetics. http://www.geocities.com/jsonnentag/iguana/gelrun.htm
Tautz, D. and Renz, M., 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nuc. Acids Res. 12: 389-399
Thornton, C.A., Wymer, J.P., Simmons, Z., McClain, C. and Moxleylli, R.T., 1997. Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat. Gen. 16: 407-409
Usha, A.P., Simpson, S.P. and Williams, J.L., 1995. Probability of random sire exclusion using microsatellite markers for parentage verification. Animal Genetics 26: 155-161
Van Zeveren, A., Peelman, A., Van de Weghe, A. and Bouquet, Y., 1995. A genetic study of four Belgian pig populations by mean of seven microsatellite loci. J. Anim. Breed. and Gen. 112: 191-204
Weber, J.L. and May, P.E., 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. of Hum. Gen. 44: 388-396
Weber, J.L., 1990. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genom. 7: 524-530
Wintero, A.K., Fredholm, M. and Thomsen, P.D., 1992. Variable (dG-dT)n.(dC-dA)n sequences in the porcine genome. Genom. 12: 281-288
Ziegle, J.S., Su, Y., Corcoran, K.P., Nie, L., Mayrand, P.E., Hoff, L.B., McBride, L.J., Kronick, M.N. and Diehl, S.R., 1992. Application of automated DNA sizing technology for genotyping microsatellite loci. Genom. 14: 1026-1031
DOI: https://doi.org/10.17969/agripet.v9i2.629
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c)
Copyright© 2000-2024 | ISSN: 1411-4623 | EISSN: 2460-4534
Jurnal Agripet is licensed under a Creative Commons Attribution 4.0 International License.
Published by:
Animal Husbandry Department, The Faculty of Agriculture, Universitas Syiah Kuala
associated with Animal Scientist's Society of Indonesia (HILPI).
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Phone: +62-81383736633
Email: jurnalagripet@usk.ac.id
Online Submissions & Guidelines | Editorial Policies | Contact | Statistics | Indexing | Citations